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Phase ordering of the (2) model in the post-Gaussian approximation
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The Gaussian closure approximation previously used to study the growth kinetics of the non-conserved
O(n) model is shown to be the zeroth-order approximation in a well-defined sequence of approximations
composing a more elaborate theory. This paper studies the effects of including the next nontrivial correction in
this sequence for the case=2. The scaling forms for the order-parameter and order-parameter squared
correlation functions are determined for the physically interesting cases of(@en@del in two and three
spatial dimensions. The post-Gaussian versions of these quantities show improved agreement with simulations.
Post-Gaussian formulas for the defect density and the defect-defect correlation fig(atjcare derived. As
in the previous Gaussian theory, the addition of fluctuations allows one to eliminate the unphysical divergence
in g(x) at short scaled distances. The nontrivial exponergoverning the decay of order-parameter autocor-
relations, is computed in this approximation both with and without fluctuati®®063-651X97)13102-9

PACS numbg(s): 05.70.Ln, 64.60.Cn, 64.60.My, 64.75

. INTRODUCTION scaling form F for the equal-time t;=t,=t) order-
parameter correlation function

In the Gaussian closure approximation for phase-ordering
kinetics, the order-parameter field is expressed in terms of an Cy(12=( (1) 4(2)) = Y2F(X) 1.2
auxiliary field which is assumed to obey Gaussian statistics
[1,2]. Recently, one of the authors extended this approach toan be accurately calculated within the theory. Hggés the
treat more general statistics and applied the method succesgagnitude ¢y=|4| of the order parameter in the ordered
fully to the cases of conserved and nonconserved scal@hase. The scaled length is defined asx=r/L(t) with
fields[3,4]. This post-Gaussian approach successfully e|imiTE|r|E|r2—r1|' For the nonconserved models considered
nated several shortcomings of the Gaussian theory. Thgere the growth exponent is= %, which is predicted by the
present paper has two primary goals. The first goal is tqheory and well established by experiments and simulations
generalize the post-Gaussian theory to treat the noncon7]. The Gaussian theory also makes quantitatively accurate
served OQ) symmetric model with continuous symmetry predictiong2,8,9 for the exponenk governing the decay of

(n>1). Systems with continuous symmetry have manyihe order-parameter autocorrelations, and defined by
physical realizations, including ferromagnets, superfluids,

and liquid crystalg[5]. We will focus on the cas&=2, )
where the defect-defect correlation functig(x) has an un- CuOt,t")~ (R for
physical divergence at short scaled distancas the Gauss-
ian theory. While the post-Gaussian theory weakens this diFinally, in addition to these accomplishments, the Gaussian
vergence, it is not eliminated. The second goal of this papeapproximation is relatively easy to implement, and has
is then to show that the inclusion of fluctuations counterbalstraightforward generalizations to more complex systems.
ance and thereby eliminate the divergenceg(ix) in the Despite these achievements there remain a few unre-
post-Gaussian case. solved issues. The approximate nature of Gaussian statistics
In a phase-ordering scenario, the dynamical evolution ofvas highlighted in the work of Blundell, Bray, and Sattler
the order paramete‘z-(l): lZ(rl!tl) is not typ|ca||y gov- (BBS) [10,1]}, where they Computed, within the Gaussian
erned by a Gaussian probability distribution, and analyticaFlosure approximation, the two-point correlation function for

progress up to now has relied on relatifigl) to an auxil- "€ square of the order-parameter field:

t>t'. (1.3

iary field ﬁ(l), assumed to be Gaussian. The Gaussian ap- <[l/,§_ 1//2(1)][1/%— ¥2(2)])
proximation has been very successful in treating the scaling Cp(12)=——7—— 1 — -1. (1.9
inherent in the late-time behavior of a host of growth kinetics (o= ¥ (D) (o= ¥7(2))

problems[6]. The Gaussian theory predicts the now WeII—I

: . . t is usual in comparing the theoretical scaling function
established result that for late times, following a quench]_.(x) with the data(both of which are relatively featureldss

from the disordered to the ordered phase, the dynamics Ob?X rescale the length to give the best fit. This rescaling

scaling, and the system can be described in terms of a SINY&flects the uncertainty in the relation of the theoretical pref-

growing length actor of the power law growtlil.1) to the prefactor deter-
L(t)~t, (1.))  mined in experiment and simulatiofl2]. By plotting
1/(C 2+ 1) against - F, hereafter referred to as a BBS
which is characteristic of the spacing between defects at timplot, BBS were able to eliminate any adjustable fitting pa-
t after the quenchg is a growth exponent. In this regime the rameter and show that there were qualitative differences be-
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FIG. 1. BBS plot for the Gaussian and post-Gaussian theories FIG. 2. Scaling functiorg(x) for the defect-defect correlations
without fluctuations. At & F=0.2 the upper solid curve is the in two dimensions. Ak= 0.1, from bottom to top, the solid curves
post-Gaussian result foi=2, the middle curve is fod=3, and the ~ 'epresent the Gaussian theory witlj# 0 [17], the post-Gaussian
lower curve is the Gaussian result. The solid circles are the simutheory with wy#0, the post-Gaussian theory without fluctuations

lation data ford=2, and the open circles are the simulation data for(diverging negatively, and the Gaussian theory without fluctuations
d=3[11]. (diverging positively [14]. The dots represent the simulation data

[15].
tween the simulation resulfd1] and the predictions of ex-
isting Gaussian theoriesee Fig. 1 These discrepancies 1 _
indicated a need to go beyond the Gaussian approximation. Gad(r,t)= LT(t)g(X)’ (1.10
Another motivation for going beyond the Gaussian approxi-

mation is thead hocnature of the approximation itself, and hered(x) i . | lina function. While the f
the desire to encompass it within a more general and systen\?f eieg(x) IS a universal scaling function. fie the form
for g(x) obtained from the Gaussian theory for the two-

atic framework{13]. di onal del is | d t with simul
A second problem with the Gaussian closure approxima-.'mens'ona @) model is in good agreement with simula-

tion occurs when one examines defect correlations. In thi%'honS [15] andl'teigperhn'wf?ntilﬁ] a.t I?r:ge ﬁcaéled-?lsc:a;ctes,
paper we focus on point defecte€d) whose density is ere are guajitative dirterences in the short scaled distance

defined as behavior. The Gaussian thedri4| predicts a divergence in
9(x) at small x while experiments and simulations have
g(x) approaching zero at the origisee Fig. 2
p(1)=2 4,8(r1—Xa(t1)), (1.5 This paper addresses these issues for the nonconserved
“ O(n) model by using a well-defined sequence of approxima-
wherex,(t,) is the position at time, of the ath point de- tLons for the probability distribution of the auxiliary field
fect, which has a topological chargg,. Defect-defect cor- M, which reduces to a Gaussian distribution at lowest order.
relations The theory presented here treats in detail the next nontrivial
term in the sequence. This post-Gaussian approach has been
G(12)=(p(1)p(2)) (1.6 successfully applied to both the cases of nonconsef8¢d
) ] and conserved4] scalar order parameters. While, as ex-
at equal times can be showa4] to decompose into tWo pected, the nonconserved scalar theory predicts little change
parts in the form for 7, the BBS plot shows a marked improve-
_ ment over the Gaussian theory when compared with simula-
G(r,t)=no(t) 8(r) +Gad(r.1). (.7 tions. This encourages one to extend the post-Gaussian

The quantityno(t) represents defect self-correlations and istheory to the Of) case. The key result of this paper is that
just the total unsigned number density of defects at time < Cv2 No(t), 9(x), and can all be extracted using non-

We will be primarily concerned here with the defect-defectGa“SSian statistics. This is nontrivial, since these quantities
correlation functiorg(r,t) which measures the correlations have universal forms in the scaling regime. This is connected

between different defects. The conservation law f[c.’ the 'fact 'that the prob'ability distributio'n gover_ning the aux-
iliary field in the Gaussian case has a fixed-point form deter-

mined by the solution of an eigenvalue problem. In the post-
f d"r G(r,t)=0 (1.8)  Gaussian case the determination of the fixed-point form for
the probability distribution requires the solution of a double
relatesny(t) andgyq(r,t) through eigenvalue problem. This paper focuses on tk@) @odel in

two and three spatial dimensions where experimental and
N simulation results are readily available. For thé€2Omodel
No(t)= _f d’r gad(r,t). (1.9 in the post-Gaussian approximation we find that the form for
F changes little from the Gaussian results and, as in the
In the scaling regime, it can be showhl4] that scalar case, the agreement of the BBS plot with simulations
no(t)~L~"(t), and thatgyy(r,t) has the form is improved. This improvement includes a dependence on
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dimensionality seen in the simulations, but not exhibited by R c .
the Gaussian theory. There are some problems related to the F[zp]:J ddf<§|Vl//|2+V[l//]), 2.2
negativity of C, at smallx, but these are seen to be a con-
sequence of the manner in which we defined the sequence
approximations. The exponentis now in poorer agreement
with the simulation data. The divergenceg(x) is found to
be weaker in the post-Gaussian theory than in the Gaussi
theory, but it is not completely eliminated.

We recently showed that this divergence can be elimi- -
nated in the Gaussian calsk/] if one includes the effects of ﬁ_‘/’ =V2<Z— N[ Y]
fluctuations about the ordering field. The origin of the diver- at b
gence is the appearance of nonanalytic terms in the small-

expansion of the auxiliary field correlation functiénOne |t is believed that our final results are independent of the
removes the divergence by eliminating the nonanalytic termexact nature of the initial state, provided it is a disordered
in f through a careful treatment of the fluctuations. Thisstate.

development is theoretically pleasing, since one expects the The evolution induced by E42.3) causes) to order, and

auxiliary field correlation function to be well behaved. The joqyme a distribution that is far from Gaussian. It is by now

question remains whether this post-Gaussian scheme can Bg,ngard to introduce a mapping between the physical field

smoothly generalized to include these fluctuations. We an- . e L

swer this question in the affirmative, and see that the post‘-ﬂ and an auxmzzry fieldn with more tractable statistics. We

Gaussian theory with fluctuations is a rather natural generc@n decompose exactly as

alization of the Gaussian theory. Again, the divergence in .o

g(x) is removed and the magnitude g{0) is reduced, Y= o[m]+u. (2.4

bringing the post-Gaussian theory into better agreement with

the simulation resultgl5] than the Gaussian theofgee Fig.  The utility of this decomposition lies in our ability to create

2). a consistent theory with the mappiﬁgchosen to reflect the
The first part of this paper is mainly devoted to develop-defect structure in the problem, and the fluctuation correction

ing the results for the post-Gaussian theory. Later, after W constructed to be small at late times. The precise statistics

present the post-Gaussian results §x), we will discuss i ried by the fieldsh and( will be specified below.
the role of fluctuations in detail. Section Il reviews the

Gaussian Qf) model, and the separation of the equation of "€ Mapping givings- as a function ofm is chosen to

motion into an equation for the ordering field and an equa_mcorporate the dominant defect structure in the late-stage

tion for the fluctuations. The main results of this paper areordering kinetics. We assume that satisfies the Euler-
contained in Sec. Ill, which, after introducing the post-Lagrange equation for the free-energy given by E22)
Gaussian probability distribution and general formulae forwith the spatial coordinate replaced by the auxiliary field
calculating post-Gaussian averages, derives post-Gaussian

Where the potentidV/[ ] is chosen to have @) symmetry

and a degenerate ground state Wit =y, [19]. With a
a'witable redefinition of the time and space scales, the coeffi-
cientsI" andc can be set to 1 and EQ.1) written as

2.3

expressions forF, C 2, and the equations of motion. Defect g > > N[ o]
correlations are discussed, leading into Sec. IV, which con- Vinolm]= PR (2.9

siders the inclusion of fluctuations in the post-Gaussian
ggﬁg}agh; erﬁf’/glltuse Ofrogrer?neg(r:gl ?::‘elﬁ"es d ?rf St:i S/OS\B\'/'Iéhe defects are then the nonuniform solutions of &5
conclude wit% a summgr and discupssion " 7 “which match on to the uniform solution at infinity. Since we

y ' expect that only the lowest-energy defects, having unit topo-
Il. MODEL logical charge, will survive to late times, the relevant solu-
' tions to Eq.(2.5 will be of the form

A. Preliminaries

We consider the G{) model, which describes the dynam- o[m]=A(m)m, (2.6
ics of a nonconserved)-component order-parameter field . L
#(1)=(p1(1), ... ¥(1)). To begin we will work with vl/herem=|m| and m=m/m. Thus the interpretation of

generaln; however, later we will focus on the interesting m is that its magnitude represents the distance away from a
casen=2. As in previous work in this ard@], the dynamics defect core, and its orientation indicates the direction to the
are modeled using a time-dependent Ginzburg-Landau equdefect core. We expeaeh, away from the defect cores, to

tion grow asL in the late-time scaling regime. Inserting E3.6)
R . into Eq. (2.5 gives an equation foA,
d SF
a_ltp:_[‘&_ (21) n—-1
oY VZA— —A=V'[A]=0, (2.7)

We assume that the quench is to zero temperature where the

usual noise term on the right-hand side is zE¥8]. I' is a  where the prime indicates a derivative with respechtdhe
kinetic coefficient and:[J;] is the free energy, assumed to boundary conditions ar&(0)=0, A(%) = . An analysis of
be of the form Eqg. (2.7) for n>1 and largem yields
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K > wpy -
A(m):‘/’O[l_HZ‘*’"' ' (2-8) @ZWU, (2.13)

where k=(n—1)/V"[ ]>0. The algebraic relaxation of where w, is a constant to be determined. This form will
the order parameter to its ordered value is a distinct featurallow us to construcf(x) to be analytic through terms of
of the O() model forn>1, which must be carefully treated O(x?). It was shown i{17] how Eq.(2.13) is the first term

in the evaluation of some averages. In the scalar casg a series fo, which can be used to enforce analyticity at
(n=1) ¢ relaxes exponentially tg;, away from the defects. O(x*) and beyond.

B. Separation of the equations of motion C. Gaussian approximation

In[17] it was shown how one can quite generally separate  To complete the definition of the model one must specify
the equation of motioKi2.3) into an equation for the ordering the form of the probability distribution for the auxiliary field

field o and an equation for the fluctuating fiedd One finds . Forcing& to satisfy the exact equation of moti¢2.9) is

that o satisfies the equation of motion tantamount to solving the problem exactly, and will deter-
. mine a probability distribution fom which is complicated
B=0, (29  and extremely difficult for purposes of computation.
with Progress can be made if one imposes the weaker constraint
. . B(1)- 0(2))o=0. 2.1
BEr?t(r—Vzcr-i—Vzma'—@. (2.10 (B(1)-(2))o (219

. . _ _ _ This equation allows one to insure tHaf1) is reasonably
is chosen so that is small in the scaling regime and thus small at late times, but gives one the flexibility to choose a
represents a fluctuation. The equation of motionuas suitable probability distribution. The simplest choice is a

5 Gaussian probability distribution fon:
U -
a_;:VZUi_Wij[O']Uj_i, (21])

P[m] =P m] =N dl", (2.19

where a sum over the indexis assumed and, to leading with A/ a normalization constant, and

order in 1L, o % 9
W;jLo]=dsaio;, (2.12 Ko[m]zzf d1d2C, %(12m(1)-m(2). (2.1

which is purely longitudinalgg=V"[ o] >0. Co(12), the correlation function for the auxiliary field, is

If we set® equal to zero in Eq(2.10, we obtain the explicitly defined through

equation used previou§ly to Qetermine %eorrela&ions[Z]. (Mi(1)m;(2))o= 8;;Co(12). (2.17

This choice decouples andu. The equation fou would o _

then separate into@assles§20]) diffusion equation for the Here we have used ), to indicate an average using the
transverse piece; and an equation for the longitudinal piece Gaussian distributio®s[ m]. Later, when we consider post-
u_ with a mass term-q2u, . However, as was seen in the Gaussian statistics, we will uge) to denote an average us-
Gaussian theorf2,14], the equation forr would necessarily 1Ng the post-Gaussian distributid? m]. The system is as-
lead to nonanalytic behavior in the short scaled-distance exdUmed to be statistically isotropic and homogeneous, so
pansion for the normalized auxiliary field correlation func- Co(12) is invariant under interchange of its spatial indices.
tion, f(x), and would ultimately lead to an unphysical diver- For future reference we also define the one-point correlation

gence ing(x) at smallx. We must choos® so thatf (x) is function

analytic for small. The possible forms we can use forare So(1)=Cq(11), (2.18
discussed in detail if17]. The key ideas are the following.
(i) © is chosen to be a function @h only. This choice and the normalized auxiliary field correlation function

means that satisfies a closed equation, whilds slaved by
m. This highlights the fact that, since we are working at zero f(12) = ,
temperature, it i© and not temperature which is driving the S(12)

fluctuations{21}. L with So(12)= VSo(1)5o(2). As discussed above, it is ex-

(if) ® must be odd undem— —m. pected that botlC, and S, grow asL? at late times.

(i) ® must scale a®(L ~?) in the scaling regime if it is In the Gaussian theory the relationship between the aux-
to compensate for the terms in the equation of motion whichjiary function f and the observable functio®,, C 2, and
lead to the non-analyticities if. This will also allow us to G can be derived without reference to the dynamics con-
treatu as a fluctuation since it will impIyE~L*2. tained in Eq(2.14. Using Eqs(2.4), (2.6), and(2.8) C, can

It is sufficient for our purposes to consider be written to leading order in [l/as

~ Co(12

(2.19
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C,(12)=y3(Mm(1)-m(2))o=yaF(12),  (2.20
with
_nf 21 n+1F1 1_n+2_f2 22
"t |22 [z ) @A

where B is the beta function an& is the hypergeometric
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Constraint(2.14 determines the time evolution of the
two-point order-parameter correlations. We use dL4) to
determinef and F, which are related through Eq2.2J).
Knowledge off then allows us to determing andg. To
simplify the discussion we restrict ourselves initially to the
case® =0, considered ifi2]. The case whe® has the form
(2.13 was addressed ifil7], and later we will discuss the
inclusion of fluctuations in some detail. After some manipu-

function [2,22]. For later convenience, we define the short|ation, Eq.(2.14 becomes

forms
F—Fl 1_n+2_f2 29
1= 515171 l ( . 2
and denote
LS d°Fy 2.2
1=gr Fi=geEe (2.23

The quantityC,. (1.4), as obtained by BB§10] for
n>1, is given by

n
c¢z=F[1,1;§;f2 —1. (2.24
For later notational simplicity we shall write
n
F,=F 1,1;§;f2 : (2.25

and, as withF,, use the prime notation for differentiation

with respect tdf. As pointed out irf11], one can directly test

the assumption of Gaussian statistics, independent of the spa-

tial form of f, by plotting 1/C,2+ 1) against +-F. This is

done for the Gaussian(® model in Fig. 1, and the discrep-

1
2 —
7, F12 = ViF(12) ~ oy farF(12) =0,

Here we have used the short-hand notatigfi= ¢ F/ df. For
t{>t,, both F andf are small. In this limit Eq(2.30 be-
comes a linear equation fof and, with the definition

mSp(t)
L2(t)= V

(2.30

4t (2.3)
for the scaling length. [23], A can be determined 42,8]

A=d— — 2.3

“ 232
To examine the equal-time order-parameter correlations in
the late-time scaling regime, we dgt=t,=t and write Eq.
(2.30 in terms of the scaled distange To leading order in
1/L we have[2]

N o
XV, F+ V)Z(]-'Jrﬂfo"f}':O. (2.33

This is a nonlinear eigenvalue problem with eigenvajue

ancy between the Gaussian theory and the simulation data gtering via the definitiort2.31) for the scaling lengthu is
evident. Since this discrepancy is due to the choice of Gauséletermined by numerically matching the analytically deter-
ian statistics and not due to the method used to determin@ined behavior at smak onto the analytically determined
f, it strongly suggests that an improved choice of probabilityPehavior at large. For largex both 7 andf are small, and

distribution is needed.
Within the Gaussian theorg(x) is given by[14]

~ h\""1oh
g(X)=n!(;) o (2.26
with
h=—%j—;, 2.2
and y=1/\/1—f2. The defect density is
nl ng) ni2
Mol = 22 (T4 n2) nSO(tJ . (228
with
882>=%<[V*n3]2>o. (2.29

In the Gaussian theory without fluctuatioﬁﬁf)z 1. Expres-
sions(2.26) and (2.28 satisfy the conservation layl.9).

Eq. (2.33 can be linearized. In this regime the physical so-
lution to Eq.(2.33 is
Fxd-22gX2, (2.3
These results are valid for arbitrang>1. Our focus, how-
ever, is on the @) model, where there are known qualitative
discrepancies with simulation and experimental ddié—
16]. With this in mind, we now examine the smallbehav-
ior of the scaling equatiof®.33 for the casen=2. For small
X, EQ. (2.33 admits the following general expansion ffr

2 Kz 4
f=1+f,x914+-—| 1+0O|—| | |+fyx
Inx Inx
S ETI PR +0(x8) (2.35
Inx Inx ) '

Nonanalyticities inf appear as a result of the nonzé&gand
K, coefficients multiplying factors of 1/in

The coefficients of expansid2.35 can be determined by
examining(2.33 order by order at smal. Balancing terms
at O(Inx) gives
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T As one does computations at highkrmore of these con-
fo=— And (2.36  straints are necessary to determine allaks. At eachJ one
has a systematic approach to the problem and one can, in
At O(1) one has principle, calculate to any order id. One expects that by
enforcing more constraints o one will satisfy the exact
Kp=— E (2.37 equation of motion(2.9) more stringently. At thfa same time
d one develops a more accurate expressiorPfon] as more

The nonzerd, coefficient is particularly important, since it Hermite polynomials are included. In this sense then, the
. L2 . P y imp ' theory is expected to improve as one calculates to higher
is responsible for the divergence of the defect-defect correx

lation function at smalk, as one can see by examining Eq Finally, the use of Hermite polynomials allows one to
' " straightforwardly express post-Gaussian averages in terms of
(2.26 at smallx where one has, fon=d=2, g y exp P 9

easily computable Gaussian averages.

foK, 1 We will work to orderJ=2, which we call the first post-
g(x)= 5.7 W +eee (2.38 Gaussian approximation, so we will make the choices
aO: 1, (35)
Il. POST-GAUSSIAN THEORY
A. Beyond the Gaussian approximation a,(i;1)=0, (3.6
Any scheme that claims to improve upon the Gaussian o

approximation should include the following elements: it ax(i,j;12)= 6;;Ax(12), 3.7

should be systematic, with the Gaussian approximation being
lowest order; it should fairly easy computationally, at least in ay(iy,...i5;1...0)=0 for J>2. (3.9

the early stages, and it should converge to the results of

experiment and simulation the farther one goes in thg gren (12) is a scalar function, symmetric in its arguments.

scheme. We now present an approach which generalizes the\e congition ona, insures that the theory reduces to the
previous Gaussian theory and satisfies the first two criterigqrect Gaussian limit at lowest order and normalizes the
completely, and the third criterion in all areas save one.

Since any functional can be written as a sum over gene
alized Hermite functional polynomials, we write the prob-

probability distribution, providedo[ m] is normalized. The
condition ona, reflects the fact that there are no external

ability distribution for the auxiliary field in the forrfi3] fields andP[m]=P[—m]. The choice fora, follows from
the O() symmetry, and considerations of isotropy and ho-
. Lo _ _ mogeneity.
P[m]zPo[m]JZ0 | > Cagliy gl )
=00y i,

B. General results for post-Gaussian averages
XHy(iq, ...i5:1...9), (3.) . I
In order to calculate physical quantities likg, in the
where the indices,, . . . i; each range from 1 to. Integra-  Post-Gaussian approximation, we must be able to express
tion over repeated spatial and temporal variables is assume@ne- and two-point averages likes(1)) and(¢(1)x(2)),
Po[m] is the Gaussian distributioft ; are the Hermite func- Where¢ and x are functions ofm, in terms of related
tional polynomials Gaussian averages. The calculation for the case with no spa-
) tial gradients in the average is presented below. The impor-
Hy(iqg, ...ig:1 ... 0)=(—1)%eRolm tant case where there are spatial gradients in the average is
slightly more involved, but the results for the ©(model
% &’ o Kol are straightforward generalizations of the results for the sca-
om; (1) ...om; (J) ’ lar case, presented in[3]. The two-point average
(#(1)x(2)) can be related to Gaussian averages by using
(3.2 the definitions(3.1) and (3.2) and doing a few integrations
parts. The result is

which form a complete orthogonal set, spanning a space cor?—y
taining the Of) symmetric functional§3]. The functions o o
a;, along withCg,, are determined by the symmetry of the (p(1)x(2))= E E ay(ip, ...,i31...9)
problem and the series of constraints J=01q,--ig

(B(1)-0(2))=0, (33 X< SH X2 _> @39
am; (1) ...am; (J)
(Bi(1)oj(2)ou(3)a1(4))=0, (3.4 0

The barred quantities are integrated over in this expression,

but they will only contribute if they take the values 1 or 2. In
In the Gaussian theory/d&0) only the first constrain3.3) the first post-Gaussian approximati¢8.5—(3.8) the two-
was necessary to determine the dynamic€gfcompletely.  point average3.9) is
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(()x(2))=($(1)x(2))o+ Az (11(V7HA(1)X(2))o Equation(3.13 can also be used to determine the post-
GaussiarC . from the GaussialC 2. We have
+Ax(22/( (1) Vix(2))o+2A2(12)

X(Vim(1)-Vix(2))o, (3.10
. . . . . Unlike the situation in the Gaussian theory, we now need to
with no integrations over the spatiotemporal varl_ables. If W& how the specific forms fof andg in order to create a BBS
zowll progeeAd 29 under the asﬁumr)tlgnf trg"tplot. Knowledge of the adjustable parameter in the length
2(11) an 2(22) are nonzero, we will only be force OEcale is, however, still unnecessary. Since the formsf for

Cype=F,+2gF;,—1 for n=2. (3.18

later to set t_hem to zero so that th_e Iong-d|stan(_:e behavior ndg are needed in the BBS plot, one hopes that the shape
the theory is physical. For notational convenience we se

these quantities to zero at the outset. Equat®h0 can be
further simplified by introducing the operator

f the BBS curve will now depend on spatial dimensionality.
We should note at this point that if we had maintained
A,(11)=0 we would now be forced to set it equal to zero, so
that bothC,, andC,2 decay to zero at large distances, as is

~ J
G(12= 1+2A2(12)m (3.11 expected physically.
since, for a general Gaussian averégé1)x(2))o, the fol- D. Equations of motion
lowing identity holds: To determine the unknown functiorisandg we will use
P constraints(3.3) and (3.4), enforced to keegﬁ small. For
(Vm¢(1)'me(2)>o=m<¢(1)x(2)>o. now, we will work with ®=0 to make the post-Gaussian
0

(3.12 analysis more transparent.
' From our experience with the scalar c48¢], we know
The two-point post-Gaussian average then can be compactijat the constraint equatid8.3) evaluated at a single space-
written time point,

(B(L)x(2)=6(12(S(1)x(2))o.  (3.13 (B(1)-0(1))=0, (3.19

The operator notation illuminates the close relation betweegontains information about the short-distance behavior of the
Gaussian and post-Gaussian averages in the first pogheory that will allow us later to simplify the constraint equa-
Gaussian approximation. By settind2)=1 in Eq.(3.10, tions forf andg. Written in full, Eq.(3.19 becomes
one obtains the formula R A R R

30 (0%(1))~(a(1)- Vio(1))+(o(1)- Vio(1))=0.

(B(1)=($(1))q (3.14 (3.20
for the one-point average in the first post-Gaussian apprOXiEvaluating Eq(3.20 to leading order, we have
mation. e ’
di@=1 for n=2 (3.21)
C. Cy and C,2 in the first post-Gaussian approximation
The post-Gaussian analog of E(@.20 for the order- Where
parameter correlation functio@,, can be straightforwardly 2)_ «(2) )
calculated using Eq.3.13. We write do ' =Sg"+2A7", 322
Cy(12)= y2G(12(M(1)- M(2))o= Y2F(12), (3.19 SBZ)EPTZ— ViCo(12), (3.23
where now ) ,
AP =lim —V2A,(12). (3.29
F= B2 Lntd fFy+2g(F,+fF] 3.1 o
- 2 ) [ 1 g( 1 1)] ( . 6)

Definition (3.23 for S is equivalent to Eq(2.29 if one
considers Eq(2.29 to be an average using a Gaussian prob-
ability distribution with the post-Gaussiay(12) as its cor-
Ay(12) relation function. The constast?) will turn out to be deter-
9(19=——, (3.17  mined as part of an eigenvalue problem. Sirg® is a
So manifestly positive quantity, Eq3.21) also provides an im-
in analogy with the definition fof, Eq. (2.19. Although f p(()zr;tant upper bound on the elgenvamg). We must have
retains many features from the Gaussian theory, guuar- A2 <1/2 forn=2. _ , ,
ries much information about the post-Gaussian corrections, W€ Now examine the constrai8.3) written out in full,
later we will find thatf andg influence each other strongly, R - R - R -
and must be determined together using the appropriate corfs,(o(1)- 0(2)) = Vi(a(1)- 0(2)) +{[Vao(1)]- 0(2))=0,
straint equations. (3.25

The post-Gaussian quantityis defined as
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which in the Gaussuqn case is the sole Qquatlon needed to <[at1(;(1)]‘5_(1)A(2)>_<[V§5(1)]‘(;(1)A(2)>
determine the dynamics &, . The evaluation of Eq.3.25

involves a straightforward application of E(3.13 to the V2T o(1)A(2)) =0 33
appropriate Gaussian averages. At late times, the leading or- {[Vno(1)]-0(1)A(2))=0. (3.32

der result is To evaluate the post-Gaussian averages in (B®2 one
must use the formulas given in Sec. Il B and generalize the

n n+1 . : i :
o, F(12)— V2F(12)— —Bz{—,— [(f+2g) results in[3] for post-Gaussian averages containing spatial
! 2wS(1) ~ [27 2 gradients of ascalar field m to the case of a vector field
X (Fy+fE)) +2gf(2F+fF)]=0. (3.26 m. Two new Gaussian averages specific to the)afiodel

must be calculated. After some algebra and rearrangement,
For t;>t, F, f andg are small, and Eq(3.26) again be- Ed. (3.32 reduces at late-times to an equal-time scaling
comes a linear equation fof. The relation between and  €quation forf andg. Forn=2 we have, at leading order in
w is Eq.(2.32), unchanged from the Gaussian theory, and thel/L,
definition of the scaling length, Eq. (2.31), is retained.

As in the Gaussian case, we can write E826 as an AmAZ YT+ AV fV g+ u(V,F)2(1+8gfy?)=0.
equal-time scaling equation (3.33
. n 1 n+1 Forn>2 we have
XV, F+ViF+ 4—52[5,7 [(f+29)(F,+fF})
® 4mAPGFF 5l 2+ 4V, fV,g[2f2F ,— (n—2)(F,—1)]
+F20i(R+ TR 1=0. (327 + (Y, 5)2(262F,— (n—2) (F,— 1) + 2g(42°F
Although the functions?, f, andg are related through +2f2F,— (n—2)[F4+2(y2—2)(F,—1)/f])}=0.
Egs. (3.16 and (3.27), the additional constraint equation
(3.4) is needed to complete the theory and determine these (3.34

functions separately. In E¢3.4), we have a choice of how to
contract the indicegkl and 1234. It is important to note that
the functiong entering the first post-Gaussian theory is a(3'?’|_?’]ése equations, together with Eq8.16 and (3.27
two-point quantity. Thus, unlike the usual case in perturba- quations, 1og Wi qs. )

tion theory, the first-order corrections to the Gaussian theor%(:irrrln ?hcop]ﬁliitenssrm cf)f r?gﬂon_?hthrat WrI” ,E; us:qad to i(fjietder—
will not require us to treat the difficult intricacies of four- € the functions”, T, andg. There are two unspecifie

in thi : (2)
point correlation functions. Therefore, in order to determineCOnStants in this set of equationge-andA; . We thus have

g we only need enforce Eq3.4) contracted to a two-point & nonlinear eigenvalue problem in whigh the eigenvalue
function. A nontrivial constraint is obtained by contracting familiar from the Gaussian theory, and the new eigenvalue

2 . .
the indicesijkl in pairs. There then remain two possible A{?) are determined by connecting the small- and latge-

Note that, forn=2, F,=+2, and Eq.(3.34 reduces to Eq.

constraint equations behaviors of Eqs(3.27) and(3.34.
For largex, Eg. (3.27) reduces to a linear equation, as in
(B(1)-(1)a(2)- 0(2)) =0, (3.28  the Gaussian case, and once again leads tqZEg4). The
form for the exponend—2\ in Eq. (2.34) appears to be
<§(1).(;(2)(;(1)'(;(2)>:0_ (3.29 robust. An examination of Eq3.34) at largex yields
f=—4g. (3.39

Unless there exists some degeneracy one cannot, in the first
post-Gaussian approximation, satisfy relatiof3s28 and
(3.29 simultaneously. Analysis of E¢3.29 shows that, for
n=2, it produces an equation in which the eigenvaﬁi@
does not appedr24]. This is contrary to our expectation,
based on previous woffld,4], that we have to solve a double
eigenvalue problem in the post-Gaussian theory. It is there-

Up to now these results have been valid fior 1. Now, in
examining the short scaled-distance properties, we will focus
on then=2 case where there are logarithmic corrections.
The generalization of Eq2.35) is

K K
fore clear that we should satisfy E(8.28). f(x)=1+1f,x% 1+ |—2 1+0| +f x4 1+|_4
Since we are enforcing Eq3.19 we may rewrite Eq. nx nx nx
(3.28 as
X[1+0 W) +0(x5), (3.36
(B(1)-0(1)A(2))=0, (3.30
L L
where _ L 1 . Ly
g(X)=gox°| 1+ i 1+0 Inx + QX 1+Inx
A(2)=0?(2)~ . (3.3)
J— 6
This computationally convenient form allows the calculation X|1+0 Inx ) +O0). (3.3

to proceed in a way similar to that [8]. Written in full, Eq.
(3.30 becomes An examination of Eq(3.33 yields, atO(x?),
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TAL 9, + pu(f,)?=0. (3.39 no(t) =(8[m(1)]| det[V,m(1)]]), (3.48
At O(x?/Inx), one has and a piece representing correlations between different de-
fects,
Examining Eq.(3.27) yields, atO(Inx), 9ad(r, 1) =(Im(1)]oIm(2)]
xdet{ V,m(1)] det{V,m(2)]). (3.49
f2+292:__, (34@ i X
4pd We sketch the calculation @y4(r,t) for the post-Gaussian
. . theory in the Appendix. We recover the scaling relation
while atO(1), using Eq.(3.39, one has (1.10 with the post-Gaussian scaling form
KZ:_%JM d fTr+4 ) 22_o|d_%' (3.49 g(x)= '(h "~ ﬂh+ah_+ 1 l(h "Choh
wnd(fa+4g; 2 g(x)=nt| = vl R UL ol Bl
Equations(3.39 and (3.40 determinef, andg, separately (3.50

. . (2).
in terms of the eigenvalues andA™: whereh has the same definition it had in the Gaussian theory

(2.27 andh, which contains the new post-Gaussian terms, is

T
f2=4M—d[A(22)d— APd(2+AYd)], (342  given by
02—~ gL+ AFd— VATd(2+ATd)). (343 i

) . The defect densityg(t) can be calculated directly by evalu-
We have assumed that;”>0, and taken the negative iing the post-Gaussian average in E48. The derivation
square root in Eq3.42) in order to rendef, negative, as we g gimilar to that given for the Gaussian theonyj 14] and, as
expectf<1 physically. Equation$3.39 and (3.4) deter- , the Gaussian theory, the absolute value of the determinant
mine the corrections to thg leading-order behgwor. Theappearing in Eq(3.48 is a complication that has to be care-
smallx expansion of the scaling fori8.18 for C 2 is fully treated. Alternatively, we can use the conservation law
(1.9 to computeng(t), using the post-Gaussian formula

ag of )

=~ 2
ﬂx-l—gfy gk (3.5)

29,—f, 1 K, 1 1 -9
== < 4 < 3.50 for g(x). Both approaches lead to the same result:
1349 No(t)= " { il 1+nA(22)
Note that the condition fo€ ;2 to be positive near the origin, 0 2" 72T (1+n/2) | nSy(t) s
the behavior expected physically, igj2 f,>0; which is (3.52
true for

Using the smalk expansiong3.36 and(3.37) for f andg,
AP >1/4d. (3.45  we calculate the post-Gaussian modification to the behavior
of g at smallx for n=d=2:
We will find, however, thatA{?) does not satisfy this lower

bound, and the resulting negativity Gf,> has to be inter- ~ . (faF+4gy)K, 1
preted carefully. 9X)=—>> X2(Inx) 2 e (3.53
E. Defect correlations Thus, as in the Gaussian theory, leading order nonanalytici-

ies in the smallk behavior of the post-Gaussidrandg are
esponsible for an unphysical divergenceg(x) at small

X. We will see that in the post-Gaussian theory the diver-
gence is weaker than it was in the Gaussian theory; however,

- - - through the inclusion of fluctuations, we can eliminate the
p(L)=2ly(1)] delVay(1)], (3.46 divergence altogether.

since the zeros of/ are the locations of the defects. From
Egs.(2.6) and(2.7) we see thaty~m near the defect cores,

t

The starting point for evaluating defect-defect correlations,

is to note[14] that the density for point defec{4.5) can be
rewritten in terms of the order-parameter field,

IV. POST-GAUSSIAN THEORY INCLUDING

so that Eq(3.46 can be expressed in terms of the auxiliary FLUCTUATIONS
field A. Analysis of the & degrees of freedom
p(1)= S[M(1)] det[V]rﬁ(l)]. (3.47 We will now show how the inclusion of fluctuations about

the ordering fields can be used to eliminate the leading
This form is convenient for evaluating the equal-time defect-order nonanalyticities in the small-behavior off and g,
defect correlationg1.6) which separate as indicated in Eq. thereby rendering(0) finite. This has been done success-
(1.7) into a piece representing the defect self-correlations, fully for the Gaussian theory ifil7]. Fluctuations influence



55 PHASE ORDERING OF THE @) MODEL IN THE . .. 2309
the equation of motion for Eq. (2.9), through the nonzero 2d+ T T

0 field (2.13. The one-point equatio(8.20), used to deter- @o=02 2uf,)  2ud’
mine d{? is modified by fluctuations to

(4.7)

The next order terms ar®(x*). From Egs.(4.3) and (4.5

%3t1<02(1)>_<(}(1).V§5(1)>+<(}(1).an(;(l» we obtain two equations determinirig andg,:
wo (02(1)) (mAP +4ufy)gs+4u(f—go)f,
2 (0°(1))=0. (4.2
L*(ty) =2u2(f2) 2= AP g, >, (4.8
The only difference between Eqggl.1) and(3.20 is the last (fo+29,)
term, which isO(L~2). For n=2 the leading order contri- f4+294=%(f2)2+3f292+m 1. 2@l
bution to(4.1) is O(InL/L?) so the fluctuation term does not 4.9

modify the resultd{?’=1 for n=2 in the post-Gaussian

theory. A similar thing happens in the Gaussian theorySimilarly, at the next order two relations can be derived for

where the inclusion of fluctuations does not modify the rela-K, andL,, which are more involved.

tion SP’=1 for n=2 [17]. By usingw, to eliminate the terms a@(x%/Inx) in f and
Fluctuations do, however, modify the two-point equationg, we have also managed to remove the divergenag()

of motion (3.25 determining the order-parameter correla- at the origin. For smalk, we now have

tions, and lead to a formula fox,

S I o (f2? 1
N - g(X)——? 3(f4+294) ——— 5 —2f50,]+0 Inx
I 2 (4.2) (4.10
At equal times in the scaling regime E(B.25), including B. Analysis of fluctuation correlations

fluctuations, becomes . . L
Correlations in the fluctuation field are completely de-

termined within the theory. There are two types of equal-
[(f+29)(F1+fF])  time averages that are of interest to us. The first describes

cross-correlations between theandu fields, and is defined

RIS LN L
X: Vx SAR VWL PEETN

+2gf(2F;+fF7)]=0. (4.3 as
The final equation of constrairi8.32 is modified to Cuo(lz):(ﬁ(rl,t)~E(rz,t)>. (4.11
<[(7t1(}(1)].(}(1)A(2)>_<[V§(}(1)].(}(1)A(2)> The second describes correlations of the fluctuation field
with itself, and is given by
—2—<02(1)A(2 ) H([VEa(D]-a(1)A(2))=0. 8ijCuu(12) = (ui(r1,Hu;(rz,1)). (4.12

(4.4  Aswe will see later, these quantities are closely related in the
scaling regime. 1f117] it was shown how one can form equa-
However, a calculation fon=2 shows that at leading order tions of motion for botiC,, andC,, by using the equations
in 1/L, this equation is unchanged from E®.33, even in  of motion (2.9 and (2.11) for ¢ and u. We can then use
the presence of fluctuations. Again, one has these equations to determii®,, and C,, explicitly if we
make the additional assumption thatis a Gaussian field
4.5 coupled to the post-Gaussian fietdl To effect this change
we replace the Gaussian functiomalol™ in Egs.(3.1) and
The largex behavior of the theory with fluctuations is essen-(3.2) by the Gaussian functionad™ ol m“], which is - qua-
tially unchanged from the original post-Gaussian theoryyatic in bothm andU. Post-Gaussian averages overare

Equations(2.34) and(3.39 still hold, except now\ is given  eyaluated as before, while repeated use of the identity
by Eqg.(4.2). Expansiong3.36) and(3.37) are used to exam-

ine the smallx behavior of Eqs(4.3) and(4.5). Once again . )
f, andg, are given by Eq(3.42 and(3.43. Relation(3.39 <Ui(1)v4[m,u]>:f d3Cyn(13) (3)A[m .u]
still holds, and from Eq(4.3) one has ™

AnAPgf+4uV, V. g+ u(V,f)?(1+8gfy?) =0.

1)
+f d3 Cuu(13)< 50.(3) A[m u]>
(4.13

T 2dKy(f,+4g,). (4.6

2d+ —m

wo=0>2

w
2,(Lf2

At this point we insist that andg are analytic for smak at it
0(x?) (i.e., K,=L,=0). This then fixesw, in terms of u
andA$?, 8iCum(12 =(u(1)my(2)), (4.14
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allows averages oven to be expressed in terms a,,,
Cum,» and post-Gaussian averages overWe then evaluate

the averages ovem, which can be expressed in terms fof
and g obtained previously. Finally, we examine the equa-
tions of motion for the fluctuations in the late-time scaling
regime and extract the scaling functions. The analysis closel
follows that given in[17], so here we report only the final
results for the post-Gaussian theory.

In [17] it was shown that, as a consequence of the defini

tion (2.13 for ®, we must havai~L 2 to leading order.
We therefore write the scaling relations

v
Cuwo(12) = FFU(X) (4.19
and
s
Cuu(lz):FFuu(X)- (4-16)

The equations of motion developed [ib7] can be general-
ized to the post-Gaussian case, and produce the followin
relations betweeir, andF ,,:

1 1-VJ1-12
Fu(0) ?(1—\/W)+ng2— = | T
__f2
| P 2gf ]:_w_gﬂx)
1+y1-12  J1-1%(1+1-f?)2 o
(4.17
and
Fuu(X) | oo+ gF(O)F() (4.18
X)=— — X). .
uu ag o o u

Forg=0, Eq.(4.17) simplifies to the Gaussian form found in
[17]. The quantityF,(0) enters into these equations, and an
analysis of Eq(4.17 atx=0 gives
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TABLE |. Values for the eigenvuales (top section and A
(bottom sectioh for the post-Gaussian theory, both with and with-
out fluctuations.

wo= 0 0)03&0
9=2 0.8380 0.7597
d=3 0.5326 0.5525
d=2 0.05861 0.08092
d=3 0.06364 0.05392

V. NUMERICAL ANALYSIS OF THE NONLINEAR
EIGENVALUE PROBLEM

A. Post-Gaussian theory without fluctuations

The coupled nonlinear equatiof&16), (3.27), and(3.33
compose an eigenvalue problem for the eigenvajuesnd
A which must be solved numerically. The eigenvalues are
selected by matching the smallbehavior, given by Egs.
(3.36 and (3.37), onto the behavior at large, Egs.(2.39
and (3.35. A fourth-order Runge-Kutta integrator is used to
integrate Eq. (3.27 and (3.33 from near the origin
(x=0.001) into the larges asymptotic regime. Matching
onto the proper larg&-behavior for F is the prime factor
determiningu; the value ofA%?) controls how well condition
(3.39 is satisfied. The techniques used here are very similar
to those used in previous studigs.

We have examined the(@ model without fluctuations in
two and three spatial dimensions. Table | contains the results
for the eigenvaluesy and A%?). The upper bound
AP <1/2 is satisfied both here, and later when we include
fluctuations. The order-parameter autocorrelation exponent
N\ can be computed using E.32 onceu is known. The
values for\ obtained from the post-Gaussian theory are pre-
sented in Table Il, along with results from the Gaussian
theory[17]. The Gaussian theory is in excellent agreement
with simulations[9] of the O(2) model in two dimensions,
which give the value.=1.171. The post-Gaussian theory is
in worse agreement with this simulation result. We will see
below that the inclusion of fluctuations improves matters
slightly.

While the post-Gaussian theory decreasesgnificantly,
the form of the order-parameter scaling functidirchanges
only slightly from the Gaussian theory. The functidgnis

F(0)=— “’_g_ (4.19  plotted in Fig. 3 for the Gaussian and post-Gaussian theories
do in two dimensions. The minor difference between the two
theories is reassuring because the Gaussian theory is already
We then find that
TABLE II. Auto-correlation exponentn from the Gaussian
wg 5 the(t)_ry[lz)] (ttr(])p _stﬁctlog ar??hfrotn;lth? p(:_st-Gaus&an thed@bpttom
]:uu(o)z ?[l_ ;}>0, (4.29 sec IOT), oth with ana without rluctuations.

° wp=0 we#0
which is a necessary condition for stability and is expectedj= 2 1.172 1.269
from definitions (4.12) and (4.16. Equations(4.17) and  4—3 1.618 1.655
(4.18 explicitly show how correlations in the field are
slaved to those of the order parameter. We have demont=2 1.063 1.092
strated here that the theory is consistent and that the fluctug—3 1.525 1.513

tions remain ofO(L ~?).
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shown in Fig. 1 for the @) model in two and three dimen-
sions. The post-Gaussian theory is in better agreement with
J the simulation result$11] than the Gaussian theory. The
two-dimensional post-Gaussian results are in very good
- agreement with simulation data for—17>0.4, which are
intermediate to large distances>1. Unlike the Gaussian

. theory, the shape of the BBS plot in the post-Gaussian theory
depends on spatial dimensionality. On this point the post-
. Gaussian theory exhibits the same trends that are seen in the
simulations—as the dimensionality increases from two to
three the BBS plot approaches the Gaussian result. These
observations are strong evidence that post-Gaussian statistics
provide a more accurate description of the statistics govern-

ing the auxiliary fieldm than do Gaussian statistics.

Figure 2 shows the scaling forrg(x) (3.50 for the
Jefect-defect correlations for both the post-Gaussian and
Gaussian theories in two dimensions. Simulation re$uf$
are also shown. While there still is a divergencegiix) at

in good agreement with simulations on this pojeif. The smallx in the post-Gaussian theory, it is weaker than, and of
functional form off has the same qualitative features/as ~OPPOSite sign to, the divergence occuring in the Gaussian
The quantityg is shown in Fig. 4. A key observation is that theory. The relative weakness of the divergence is a conse-

the first post-Gaussian correction measuredypy) is small  duence of the small valuki;=0.0018 in the post-Gaussian
for all x. theory, compared t&,=—0.5 in the Gaussian theory. We

The functionC 2, Eq. (3.18, measuring correlations in see that the use of post-Gaussian statistics does much to

the square of the order-parameter field can be calculate@liminate the the unphysical divergenceg(x), even in the
from f andg. The physical, positive divergence @, at absence of fluctuations.
small x, which is seen in the Gaussian theory, is now ren-
dered negative. This occurs in two and three dimensions.
One does not have this problem in the post-Gaussian scalar
theory [3]. Superficially, this unphysical result is a conse- The purpose of including fluctuations is fourfold. First,
quence ofA(zz) not satisfying the lower boun¢B.45. More ~ We want to render the auxiliary field correlation function
careful consideration indicates that the root of the problennalytic for smallx. Second, we would like to completely
lies in the method we chose to seld&ftm]. Our truncation ehmmate the unp_hy5|cal divergence at smallin g(x).

. - . X . Third, we want to improve the agreement between the value
of the expansion oP[m] n Hermite functional polynomials of \ obtained from the post-Gaussian theory and the value
(3.1 ignores terms irP[m] that areO(g?). To remedy this  seen in simulations. Fourth, we would like to see if the in-

FIG. 3. Scaling formF(x) for the order-parameter correlation
function in two dimensions. Ak=2 the upper curve is the post-
Gaussian theory without fluctuations, and the lower curve is th
Gaussian theory without fluctuations.

B. Post-Gaussian theory including fluctuations

we use a corrected form fd,2, clusion of fluctuations increasess?) so that Eq.(3.45 is
F 2 satisfied. We choos® to have the form2.13. In this ei-
C,2=F; 1+gF—2> -1, (5.2 genvalue problenn is selected using Eg@4.7), which guar-

antees thakK,=L,=0. We then solve the nonlinear eigen-
value problem posed by Eq&3.16), (4.3), and (4.5 using

the same methods we used above for the unmodified post-
Gaussian theory. Fod=2 the solution of the eigenvalue
problem gives wy=—0.2511, while ford=3 one has
wp=0.1290. The eigenvalugs andA(zz) are given in Table

. Ford=2 the eigenvalud'? is increased; however, it still
does not satisfy the boun@®.45). In three dimensiongS?)
actually decreases slightly. Table Il contains the values for
8 \. The agreement between the value Xoobtained from the
post-Gaussian theory fat=2 and the value from simula-
tions is slightly improved when fluctuations are added. Add-
4 ing fluctuations ford=3 actually decreases the value for
slightly, moving the post-Gaussian result farther away from
the Gaussian result. We cannot comment on whether or not

that differs from the previous forrt8.18 only atO(g?), and
is manifestly positive near the origin. The BBS plot of
1/(Cy2+1) against - F using the corrected forn.1) is

0.00

—0.04

-0.08

—012 . . , this represents an improvement since, to our knowledge, no
0 1 2 3 4 simulation data foix for the three-dimensional (@ model
x exists.

The scaling formF for order-parameter correlations is
FIG. 4. The auxiliary functiom(x) for the post-Gaussian theory only slightly modified from the form shown in Fig. 3. On this
without fluctuations in two dimensions. point, the post-Gaussian theory seems less susceptible to the
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T —— T . theory. Scaling results that are already in good agreement

Lor Y S S ' with simulations, such as- and the large scaled-distance
os L . o | behavior ofg(x), are essentially unmodified by the addition
. of post-Gaussian corrections. On the other hand in the BBS
1 06| .9 i plot (Fig. 1), where there exists a large discrepancy between
Cpatl o/ simulations[11] and the Gaussian theory, the addition of
04r 1 post-Gaussian terms qualitatively improves matters. Unlike
sl y | the Gaussian theory, the BBS plot in the post-Gaussian
' theory without fluctuations has a dependence on spatial di-
0.0 . . ! . mensionality which shows the same trends seen in the simu-
0.0 0.2 0.4 06 08 10 lations. In addition, the first post-Gaussian approximation
1-F nearly removes the divergencegiix) at smallx.

The development here suggests some avenues for improv-
tuations. At 1-F=0.5, the lower solid curve is the Gaussian ing the post-Gaussian trgatment. For now we have usfed the
theory, and the upper two curves, which are virtually indistinguish-"’ld hqcformula (5.1, which is correct t00(g), to obtain
able, are the post-Gaussian theory wit 0 for d=2 and 3. The meanln_gful results for the BBS plot. In order to treat these
solid circles are the simulation data fde=2, and the open circles COfrections a0(g?) properly, we should go to the next order
are the simulation data fat=3 [11]. in the post-Gaussian approximation sequence. In the current
approximation the value fax is decreased from the Gauss-
perturbations introduced by the fluctuations than the Gaussan result, and one hopes that the systematic inclusion of
ian theory[17]. Since the bound3.49 is not satisfied we terms atO(g?) will raise A\ and provide better agreement
must again use E5.1) for C 2 when creating the BBS plot. wjth simulations. It is apparent that within this approxima-
The results are shown in Fig. 5. It should be noted that fluction scheme the value fox is converging slower than the
tuations do not modify the shape of the BBS plot in theegts for the scaling functions, and may even be experienc-
Gaussian theory because theﬂ leading order dependence i% some type of oscillatory behavior.
C,2 and F on f is unaffected by, which isO(L~?). Again, It is also a nontrivial matter that we were able to incorpo-

we see that the post-Gaussian theory is in better qualitativgyte fluctuations into the post-Gaussian theory in a consistent
agreement with the simulation data than the Gaussian theory,anner. We have been successful in rendering thosnd

However, it appears that the addition of fluctuations remove
the dependency of the post-Gaussian BBS plot on dimensio
The result forg(x) in the fluctuation-modified theory is

shown in Fig. 2. We see that the inclusion of fluctuations norbetter agreement with simulati d th v i
only eliminates the divergence g{x) at the origin, but that 9 with simuiations, an us generatly im-
9(x) is in better agreement with the simulation results downpr_Oved _the agreement at small The quctuaﬂpns also
to smaller values ok than it was in the unmodified post- slightly increase the value for. We WO.U|d also "k? t0 go
Gaussian theory. When compared to the Gaussian theo yond the the simplest post-G.aL!SS|an fluctuation theory,
with fluctuations[17], we see that the addition of post- represented by Eq2.13. To do this it would seem that one
Gaussian corrections has the desired effect of reducing theeeds to consides as a post-Gaussian field, coupled to the

magnitude ofg(0), and thus producing better agreement post-Gaussiam [24]. Another interesting effect of adding

FIG. 5. BBS plot for the post-Gaussian theory including fluc-

more analytic, and thus eliminating the divergence in
(x). The addition of post-Gaussian terms to the fluctuation-
modified Gaussian theory has brought the valugf{@) into

with simulation results. fluctuations to the post-Gaussian theory is the elimination of
the dependence of the BBS plot on spatial dimensionality.
VI. DISCUSSION Whether this is by accident, or is due to some deeper struc-

. . . . ) ture in the theory is presently unknown. It would be interest-
The.mam achievement of this paper is the extension of thgeng to see if this effect remains if one includeXg?) terms
Gaussian theory for the (@ model to allow for non- . -
Gaussian statistics. In this sense the theory is unique. Itis nd P[m]. . .
trivial that the scaling properties of the Gaussian theory are An ob\_/lous next step WOUId. t_)e to examine t_heé_s)f)
retained. We have demonstrated that when the structur&mde! using post-Gaussian statistics. Tk_(@)OnodeI ISin-
- - . . teresting to study because of its application to ferromagnetic
form of P[m] is modified to include a post-Gaussian part We terials, and the role it plays in the description of monopole
can still solve thgnow double §|genvalue problem and find defects in nematic liquid crystals and cosmolé@g]. There
the fixed point solution folP[m]. Thus we see a structure are some interesting aspects associated with highe#].
emerging, related to the nature of the fixed-point, that en- |n examining the C2) model we have shown how the
courages us to believe that we can systematically change thgst-Gaussian theory generalizes to a situation with continu-
structural form forP[ m] via Eq. (3.1) and obtain improved ous symmetry, and solves some of the problems specific to
results for the scaled quantities. Although the functipis  the n=2 case. In developing the post-Gaussian theory as a
small, the approach we are attempting here is nonperturbaystematic and calculable extension of the Gaussian theory,
tive. we have also established the role that the Gaussian theory
In all areas examined, save the determination of the explays as a zeroth-order approximation to the true statistics.
ponent\, the first post-Gaussian approximation is in betterThere are many aspects of this process that suggest a deeper
agreement with the simulation results than the Gaussiaunderlying structure in the theory, including the interesting
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interactions between the post-Gaussian corrections and the

h oh hi. .

fluctuations. (Diq(l)qu(2)>o:F5iqjq+[5—F}riquq, (AS5)
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In Eq. (A4) the factor involving the integral is evaluated by

operating with the functional derivatives, integrating by

parts, applying the resulting functions and calculating the
In this appendix we outline the method used to evaluaté€maining Gaussian integrals. We find

the post-Gaussian average occuring in the defect-defect cor-

relation functiongyq(r,t) (3.49. We have

APPENDIX

2

o o f dl_d2_A2<1—2><mwikumjk(zn>
Qadr,0)=(SM(1)1O[M(2)] def V1 m(1)] o

s > h oh hl. .
Xdet[VZm(Z):D :F(sikjk+|:ﬁ—;|rikrjk, (A7)
:6il"'in6j1"'jn<Dil(l) PR D'n(l)

0

XDj (2)...D; (2)), (A1)  with
with a sum over repeated indices, and —  y[ag of
- _1Z= 27
B o Tty ar) (A8)
q(l)
Di (1) =dlmg(1)]—~ (A2) . .
1|q Thus the complete expression foygy is
Using the definition$3.5—(3.8), and(3.9) the post-Gaussian -1,
average in Eq(Al) is gdd(r:t):n!(r) WJFA' (A9)
D;(1)...D; (1)D; (2)...D; (2
(i, (1) W1D;,(2) 1(2) with the post-Gaussian terms contained in
. _ _
52 h (9h h A A
+E d1d2 As( 12)<m 2 Jn(r 5ikjk+{y r r'erk
12[ h oh  hl|. .
X[Dj(1)...D; (D (2)...D; (2)]) . (A3) Xq:mﬂ PP s LAY B (A10)
0

The first term on the right-hand side of E&3) is the origi- D€ t0 symmetry, the only nonzero contributionsi@wome
nal Gaussian average, and was computefL#. We focus from terms containing either zero or exactly two factors of
on the term involvingA,, which factors into the following r. Mindful of this, we evaluate\ and obtain

product ofn averages over the Gaussian distribusedlar

mi,S

L "2 gh h 1h_(9h 1
: 5 I T
> fd1d2Az(12)<———[Dik(1)Djk(2)]>
! omi(1) omy(2) 0 The post-Gaussian formula fggq is then
n
x 11 (D (1)D; (2))o. (A%) Bl T A ”_Zh_ﬁh
A gad(r,t)=n! E"‘ar +(n—1)n!| - FE

From[14] we know that (A12)
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