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Phase ordering of the O„2… model in the post-Gaussian approximation
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The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 16 September 1996!

The Gaussian closure approximation previously used to study the growth kinetics of the non-conserved
O(n) model is shown to be the zeroth-order approximation in a well-defined sequence of approximations
composing a more elaborate theory. This paper studies the effects of including the next nontrivial correction in
this sequence for the casen52. The scaling forms for the order-parameter and order-parameter squared
correlation functions are determined for the physically interesting cases of the O~2! model in two and three
spatial dimensions. The post-Gaussian versions of these quantities show improved agreement with simulations.
Post-Gaussian formulas for the defect density and the defect-defect correlation functiong̃(x) are derived. As
in the previous Gaussian theory, the addition of fluctuations allows one to eliminate the unphysical divergence
in g̃(x) at short scaled distances. The nontrivial exponentl, governing the decay of order-parameter autocor-
relations, is computed in this approximation both with and without fluctuations.@S1063-651X~97!13102-6#

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.60.My, 64.75.1g
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I. INTRODUCTION

In the Gaussian closure approximation for phase-orde
kinetics, the order-parameter field is expressed in terms o
auxiliary field which is assumed to obey Gaussian statis
@1,2#. Recently, one of the authors extended this approac
treat more general statistics and applied the method succ
fully to the cases of conserved and nonconserved sc
fields @3,4#. This post-Gaussian approach successfully eli
nated several shortcomings of the Gaussian theory.
present paper has two primary goals. The first goal is
generalize the post-Gaussian theory to treat the non
served O(n) symmetric model with continuous symmet
(n.1). Systems with continuous symmetry have ma
physical realizations, including ferromagnets, superflui
and liquid crystals@5#. We will focus on the casen52,
where the defect-defect correlation functiong̃(x) has an un-
physical divergence at short scaled distancesx in the Gauss-
ian theory. While the post-Gaussian theory weakens this
vergence, it is not eliminated. The second goal of this pa
is then to show that the inclusion of fluctuations counterb
ance and thereby eliminate the divergence ing̃(x) in the
post-Gaussian case.

In a phase-ordering scenario, the dynamical evolution
the order parametercW (1)5cW (r1 ,t1) is not typically gov-
erned by a Gaussian probability distribution, and analyti
progress up to now has relied on relatingcW (1) to an auxil-
iary fieldmW (1), assumed to be Gaussian. The Gaussian
proximation has been very successful in treating the sca
inherent in the late-time behavior of a host of growth kinet
problems@6#. The Gaussian theory predicts the now we
established result that for late times, following a quen
from the disordered to the ordered phase, the dynamics o
scaling, and the system can be described in terms of a si
growing length

L~ t !;tf, ~1.1!

which is characteristic of the spacing between defects at t
t after the quench.f is a growth exponent. In this regime th
551063-651X/97/55~3!/2300~15!/$10.00
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scaling form F for the equal-time (t15t25t) order-
parameter correlation function

Cc~12![^cW ~1!•cW ~2!&5c0
2F~x! ~1.2!

can be accurately calculated within the theory. Herec0 is the
magnitudec5ucW u of the order parameter in the ordere
phase. The scaled lengthx is defined asx5r /L(t) with
r[ur u[ur22r1u. For the nonconserved models consider
here the growth exponent isf5 1

2, which is predicted by the
theory and well established by experiments and simulati
@7#. The Gaussian theory also makes quantitatively accu
predictions@2,8,9# for the exponentl governing the decay o
the order-parameter autocorrelations, and defined by

Cc~0,t,t8!;
1

Ll~ t !
for t@t8. ~1.3!

Finally, in addition to these accomplishments, the Gauss
approximation is relatively easy to implement, and h
straightforward generalizations to more complex systems

Despite these achievements there remain a few u
solved issues. The approximate nature of Gaussian stati
was highlighted in the work of Blundell, Bray, and Sattl
~BBS! @10,11#, where they computed, within the Gaussi
closure approximation, the two-point correlation function f
the square of the order-parameter field:

Cc2~12!5
^@c0

22c2~1!#@c0
22c2~2!#&

^c0
22c2~1!&^c0

22c2~2!&
21. ~1.4!

It is usual in comparing the theoretical scaling functi
F(x) with the data~both of which are relatively featureless!
to rescale the lengthx to give the best fit. This rescaling
reflects the uncertainty in the relation of the theoretical pr
actor of the power law growth~1.1! to the prefactor deter-
mined in experiment and simulation@12#. By plotting
1/(Cc211) against 12F, hereafter referred to as a BB
plot, BBS were able to eliminate any adjustable fitting p
rameter and show that there were qualitative differences
2300 © 1997 The American Physical Society
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tween the simulation results@11# and the predictions of ex
isting Gaussian theories~see Fig. 1!. These discrepancie
indicated a need to go beyond the Gaussian approxima
Another motivation for going beyond the Gaussian appro
mation is thead hocnature of the approximation itself, an
the desire to encompass it within a more general and sys
atic framework@13#.

A second problem with the Gaussian closure approxim
tion occurs when one examines defect correlations. In
paper we focus on point defects (n5d) whose density is
defined as

r~1!5(
a

qad„r12xa~ t1!…, ~1.5!

wherexa(t1) is the position at timet1 of the ath point de-
fect, which has a topological chargeqa . Defect-defect cor-
relations

G~12![^r~1!r~2!& ~1.6!

at equal times can be shown@14# to decompose into two
parts

G~r ,t !5n0~ t !d~r !1gdd~r ,t !. ~1.7!

The quantityn0(t) represents defect self-correlations and
just the total unsigned number density of defects at timt.
We will be primarily concerned here with the defect-defe
correlation functiongdd(r ,t) which measures the correlation
between different defects. The conservation law

E dnr G~r ,t !50 ~1.8!

relatesn0(t) andgdd(r ,t) through

n0~ t !52E dnr gdd~r ,t !. ~1.9!

In the scaling regime, it can be shown@14# that
n0(t);L2n(t), and thatgdd(r ,t) has the form

FIG. 1. BBS plot for the Gaussian and post-Gaussian theo
without fluctuations. At 12F50.2 the upper solid curve is th
post-Gaussian result ford52, the middle curve is ford53, and the
lower curve is the Gaussian result. The solid circles are the si
lation data ford52, and the open circles are the simulation data
d53 @11#.
n.
i-

m-

-
is

t

gdd~r ,t !5
1

L2n~ t !
g̃~x!, ~1.10!

where g̃(x) is a universal scaling function. While the form
for g̃(x) obtained from the Gaussian theory for the two
dimensional O~2! model is in good agreement with simula
tions @15# and experiments@16# at large scaled-distances
there are qualitative differences in the short scaled distan
behavior. The Gaussian theory@14# predicts a divergence in
g̃(x) at small x while experiments and simulations hav
g̃(x) approaching zero at the origin~see Fig. 2!.
This paper addresses these issues for the nonconse

O(n) model by using a well-defined sequence of approxim
tions for the probability distribution of the auxiliary field
mW , which reduces to a Gaussian distribution at lowest ord
The theory presented here treats in detail the next nontriv
term in the sequence. This post-Gaussian approach has b
successfully applied to both the cases of nonconserved@3#
and conserved@4# scalar order parameters. While, as ex
pected, the nonconserved scalar theory predicts little cha
in the form forF, the BBS plot shows a marked improve
ment over the Gaussian theory when compared with simu
tions. This encourages one to extend the post-Gauss
theory to the O(n) case. The key result of this paper is tha
F, Cc2, n0(t), g̃(x), andl can all be extracted using non
Gaussian statistics. This is nontrivial, since these quantit
have universal forms in the scaling regime. This is connec
to the fact that the probability distribution governing the au
iliary field in the Gaussian case has a fixed-point form dete
mined by the solution of an eigenvalue problem. In the po
Gaussian case the determination of the fixed-point form
the probability distribution requires the solution of a doub
eigenvalue problem. This paper focuses on the O~2! model in
two and three spatial dimensions where experimental a
simulation results are readily available. For the O~2! model
in the post-Gaussian approximation we find that the form f
F changes little from the Gaussian results and, as in
scalar case, the agreement of the BBS plot with simulatio
is improved. This improvement includes a dependence

s

u-
r

FIG. 2. Scaling functiong̃(x) for the defect-defect correlations
in two dimensions. Atx50.1, from bottom to top, the solid curves
represent the Gaussian theory withv0Þ0 @17#, the post-Gaussian
theory withv0Þ0, the post-Gaussian theory without fluctuation
~diverging negatively!, and the Gaussian theory without fluctuation
~diverging positively! @14#. The dots represent the simulation dat
@15#.
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dimensionality seen in the simulations, but not exhibited
the Gaussian theory. There are some problems related t
negativity ofCc2 at smallx, but these are seen to be a co
sequence of the manner in which we defined the sequenc
approximations. The exponentl is now in poorer agreemen
with the simulation data. The divergence ing̃(x) is found to
be weaker in the post-Gaussian theory than in the Gaus
theory, but it is not completely eliminated.

We recently showed that this divergence can be eli
nated in the Gaussian case@17# if one includes the effects o
fluctuations about the ordering field. The origin of the dive
gence is the appearance of nonanalytic terms in the smx
expansion of the auxiliary field correlation functionf . One
removes the divergence by eliminating the nonanalytic te
in f through a careful treatment of the fluctuations. Th
development is theoretically pleasing, since one expects
auxiliary field correlation function to be well behaved. Th
question remains whether this post-Gaussian scheme ca
smoothly generalized to include these fluctuations. We
swer this question in the affirmative, and see that the p
Gaussian theory with fluctuations is a rather natural gen
alization of the Gaussian theory. Again, the divergence
g̃(x) is removed and the magnitude ofg̃(0) is reduced,
bringing the post-Gaussian theory into better agreement
the simulation results@15# than the Gaussian theory~see Fig.
2!.

The first part of this paper is mainly devoted to develo
ing the results for the post-Gaussian theory. Later, after
present the post-Gaussian results forg̃(x), we will discuss
the role of fluctuations in detail. Section II reviews th
Gaussian O(n) model, and the separation of the equation
motion into an equation for the ordering field and an eq
tion for the fluctuations. The main results of this paper
contained in Sec. III, which, after introducing the pos
Gaussian probability distribution and general formulae
calculating post-Gaussian averages, derives post-Gau
expressions forF, Cc2, and the equations of motion. Defe
correlations are discussed, leading into Sec. IV, which c
siders the inclusion of fluctuations in the post-Gauss
theory. The results of numerical analysis of the po
Gaussian eigenvalue problem are presented in Sec. V.
conclude with a summary and discussion.

II. MODEL

A. Preliminaries

We consider the O(n) model, which describes the dynam
ics of a nonconserved,n-component order-parameter fie
cW (1)5„c1(1), . . . ,cn(1)…. To begin we will work with
generaln; however, later we will focus on the interestin
casen52. As in previous work in this area@2#, the dynamics
are modeled using a time-dependent Ginzburg-Landau e
tion

]cW

]t
52G

dF@cW #

dcW
. ~2.1!

We assume that the quench is to zero temperature wher
usual noise term on the right-hand side is zero@18#. G is a
kinetic coefficient andF@cW # is the free energy, assumed
be of the form
y
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F@cW #5E ddr S c2 u¹cW u21V@c# D , ~2.2!

where the potentialV@c# is chosen to have O(n) symmetry
and a degenerate ground state withucW u5c0 @19#. With a
suitable redefinition of the time and space scales, the co
cientsG andc can be set to 1 and Eq.~2.1! written as

]cW

]t
5¹2cW 2

]V@c#

]cW
. ~2.3!

It is believed that our final results are independent of
exact nature of the initial state, provided it is a disorder
state.

The evolution induced by Eq.~2.3! causescW to order, and
assume a distribution that is far from Gaussian. It is by n
standard to introduce a mapping between the physical fi
cW and an auxiliary fieldmW with more tractable statistics. W
can decomposecW exactly as

cW 5sW @mW #1uW . ~2.4!

The utility of this decomposition lies in our ability to crea
a consistent theory with the mappingsW chosen to reflect the
defect structure in the problem, and the fluctuation correct
uW constructed to be small at late times. The precise statis
satisfied by the fieldsmW anduW will be specified below.

The mapping givingsW as a function ofmW is chosen to
incorporate the dominant defect structure in the late-st
ordering kinetics. We assume thatsW satisfies the Euler-
Lagrange equation for the free-energy given by Eq.~2.2!
with the spatial coordinate replaced by the auxiliary field

¹m
2sW @mW #5

]V@sW #

]sW
. ~2.5!

The defects are then the nonuniform solutions of Eq.~2.5!
which match on to the uniform solution at infinity. Since w
expect that only the lowest-energy defects, having unit to
logical charge, will survive to late times, the relevant so
tions to Eq.~2.5! will be of the form

sW @mW #5A~m!m̂, ~2.6!

wherem5umW u and m̂5mW /m. Thus the interpretation o
mW is that its magnitude represents the distance away fro
defect core, and its orientation indicates the direction to
defect core. We expectm, away from the defect cores, t
grow asL in the late-time scaling regime. Inserting Eq.~2.6!
into Eq. ~2.5! gives an equation forA,

¹m
2A2

n21

m2 A2V8@A#50, ~2.7!

where the prime indicates a derivative with respect toA. The
boundary conditions areA(0)50, A(`)5c0. An analysis of
Eq. ~2.7! for n.1 and largem yields
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A~m!5c0F12
k

m2 1••• G , ~2.8!

where k5(n21)/V9@c0#.0. The algebraic relaxation o
the order parameter to its ordered value is a distinct fea
of the O(n) model forn.1, which must be carefully treate
in the evaluation of some averages. In the scalar c
(n51) c relaxes exponentially toc0 away from the defects

B. Separation of the equations of motion

In @17# it was shown how one can quite generally separ
the equation of motion~2.3! into an equation for the orderin
field sW and an equation for the fluctuating fielduW . One finds
thatsW satisfies the equation of motion

BW 50, ~2.9!

with

BW [] tsW 2¹2sW 1¹m
2sW 2QW . ~2.10!

QW is chosen so thatuW is small in the scaling regime and thu
represents a fluctuation. The equation of motion foruW is

]ui
]t

5¹2ui2Wij @sW #uj2Q i , ~2.11!

where a sum over the indexj is assumed and, to leadin
order in 1/L,

Wij @sW #5q0
2ŝ i ŝ j , ~2.12!

which is purely longitudinal.q0
25V9@c0#.0.

If we setQW equal to zero in Eq.~2.10!, we obtain the
equation used previously to determine thesW correlations@2#.
This choice decouplessW and uW . The equation foruW would
then separate into a~massless@20#! diffusion equation for the
transverse pieceuW T and an equation for the longitudinal piec
uL with a mass term2q0

2uL . However, as was seen in th

Gaussian theory@2,14#, the equation forsW would necessarily
lead to nonanalytic behavior in the short scaled-distance
pansion for the normalized auxiliary field correlation fun
tion, f (x), and would ultimately lead to an unphysical dive
gence ing̃(x) at smallx. We must chooseQW so thatf (x) is
analytic for smallx. The possible forms we can use forQW are
discussed in detail in@17#. The key ideas are the following

~i! QW is chosen to be a function ofmW only. This choice
means thatsW satisfies a closed equation, whileuW is slaved by
mW . This highlights the fact that, since we are working at ze
temperature, it isQW and not temperature which is driving th
fluctuations@21#.

~ii ! QW must be odd undermW→2mW .
~iii ! QW must scale asO(L22) in the scaling regime if it is

to compensate for the terms in the equation of motion wh
lead to the non-analyticities inf . This will also allow us to
treatuW as a fluctuation since it will implyuW ;L22.

It is sufficient for our purposes to consider
re

se

e

x-

o

h

QW 5
v0

L2~ t !
sW , ~2.13!

where v0 is a constant to be determined. This form w
allow us to constructf (x) to be analytic through terms o
O(x2). It was shown in@17# how Eq.~2.13! is the first term
is a series forQW , which can be used to enforce analyticity
O(x4) and beyond.

C. Gaussian approximation

To complete the definition of the model one must spec
the form of the probability distribution for the auxiliary fiel
mW . ForcingsW to satisfy the exact equation of motion~2.9! is
tantamount to solving the problem exactly, and will dete
mine a probability distribution formW which is complicated
and extremely difficult for purposes of computatio
Progress can be made if one imposes the weaker constr

^BW ~1!•sW ~2!&050. ~2.14!

This equation allows one to insure thatBW (1) is reasonably
small at late times, but gives one the flexibility to choose
suitable probability distribution. The simplest choice is
Gaussian probability distribution formW :

P@mW #5P0@mW #[Ne2K0[m
W ] , ~2.15!

with N a normalization constant, and

K0@mW #5
1

2E d1d2C0
21~12!mW ~1!•mW ~2!. ~2.16!

C0(12), the correlation function for the auxiliary field, i
explicitly defined through

^mi~1!mj~2!&05d i j C0~12!. ~2.17!

Here we have used̂ &0 to indicate an average using th
Gaussian distributionP0@mW #. Later, when we consider pos
Gaussian statistics, we will use^ & to denote an average us
ing the post-Gaussian distributionP@mW #. The system is as-
sumed to be statistically isotropic and homogeneous,
C0(12) is invariant under interchange of its spatial indice
For future reference we also define the one-point correla
function

S0~1!5C0~11!, ~2.18!

and the normalized auxiliary field correlation function

f ~12!5
C0~12!

S̄0~12!
, ~2.19!

with S̄0(12)5AS0(1)S0(2). As discussed above, it is ex
pected that bothC0 andS0 grow asL2 at late times.

In the Gaussian theory the relationship between the a
iliary function f and the observable functionsCc , Cc2, and
g̃ can be derived without reference to the dynamics c
tained in Eq.~2.14!. Using Eqs.~2.4!, ~2.6!, and~2.8! Cc can
be written to leading order in 1/L as
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Cc~12!5c0
2^m̂~1!•m̂~2!&05c0

2F~12!, ~2.20!

with

F5
n f

2p
B2F12 , n11

2 GFF12 , 12 ; n12

2
; f 2G , ~2.21!

whereB is the beta function andF is the hypergeometric
function @2,22#. For later convenience, we define the sh
forms

F1[FF12 , 12 ; n12

2
; f 2G , ~2.22!

and denote

F18[
dF1
d f

, F19[
d2F1

d f2
, . . . . ~2.23!

The quantityCc2 ~1.4!, as obtained by BBS@10# for
n.1, is given by

Cc25FF1,1;n2 ; f 2G21. ~2.24!

For later notational simplicity we shall write

F25FF1,1;n2 ; f 2G , ~2.25!

and, as withF1, use the prime notation for differentiatio
with respect tof . As pointed out in@11#, one can directly tes
the assumption of Gaussian statistics, independent of the
tial form of f , by plotting 1/(Cc211) against 12F. This is
done for the Gaussian O~2! model in Fig. 1, and the discrep
ancy between the Gaussian theory and the simulation da
evident. Since this discrepancy is due to the choice of Ga
ian statistics and not due to the method used to determ
f , it strongly suggests that an improved choice of probabi
distribution is needed.

Within the Gaussian theory,g̃(x) is given by@14#

g̃~x!5n! S hxD
n21 ]h

]x
, ~2.26!

with

h52
g

2p

] f

]x
, ~2.27!

andg51/A12 f 2. The defect density is

n0~ t !5
n!

2npn/2G~11n/2!
F S0

~2!

nS0~ t !
Gn/2, ~2.28!

with

S0
~2!5

1

n
^@¹W mW #2&0 . ~2.29!

In the Gaussian theory without fluctuations,S0
(2)51. Expres-

sions~2.26! and ~2.28! satisfy the conservation law~1.9!.
t

pa-

is
s-
ne
y

Constraint ~2.14! determines the time evolution of th
two-point order-parameter correlations. We use Eq.~2.14! to
determinef and F, which are related through Eq.~2.21!.
Knowledge off then allows us to determineCc2 and g̃. To
simplify the discussion we restrict ourselves initially to th
caseQW 50, considered in@2#. The case whenQW has the form
~2.13! was addressed in@17#, and later we will discuss the
inclusion of fluctuations in some detail. After some manip
lation, Eq.~2.14! becomes

] t1F~12!2¹1
2F~12!2

1

S0~1!
f ] fF~12!50. ~2.30!

Here we have used the short-hand notation] fF5]F/] f . For
t1@t2, bothF and f are small. In this limit Eq.~2.30! be-
comes a linear equation forF and, with the definition

L2~ t !5
pS0~ t !

2m
54t ~2.31!

for the scaling lengthL @23#, l can be determined as@2,8#

l5d2
p

4m
. ~2.32!

To examine the equal-time order-parameter correlations
the late-time scaling regime, we sett15t25t and write Eq.
~2.30! in terms of the scaled distancex. To leading order in
1/L we have@2#

xW•¹xF1¹x
2F1

p

2m
f ] fF50. ~2.33!

This is a nonlinear eigenvalue problem with eigenvaluem,
entering via the definition~2.31! for the scaling length.m is
determined by numerically matching the analytically det
mined behavior at smallx onto the analytically determined
behavior at largex. For largex bothF and f are small, and
Eq. ~2.33! can be linearized. In this regime the physical s
lution to Eq.~2.33! is

F;xd22le2x2/2. ~2.34!

These results are valid for arbitraryn.1. Our focus, how-
ever, is on the O~2! model, where there are known qualitativ
discrepancies with simulation and experimental data@14–
16#. With this in mind, we now examine the small-x behav-
ior of the scaling equation~2.33! for the casen52. For small
x, Eq. ~2.33! admits the following general expansion forf :

f511 f 2x
2F11

K2

lnx S 11OF 1lnxG D G1 f 4x
4

3F11
K4

lnx S 11OF 1lnxG D G1O~x6!. ~2.35!

Nonanalyticities inf appear as a result of the nonzeroK2 and
K4 coefficients multiplying factors of 1/lnx.

The coefficients of expansion~2.35! can be determined by
examining~2.33! order by order at smallx. Balancing terms
atO(lnx) gives
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f 252
p

4md
. ~2.36!

At O(1) one has

K252
1

d
. ~2.37!

The nonzeroK2 coefficient is particularly important, since
is responsible for the divergence of the defect-defect co
lation function at smallx, as one can see by examining E
~2.26! at smallx where one has, forn5d52,

g̃~x!5
f 2K2

2p2

1

x2~ lnx!2
1•••. ~2.38!

III. POST-GAUSSIAN THEORY

A. Beyond the Gaussian approximation

Any scheme that claims to improve upon the Gauss
approximation should include the following elements:
should be systematic, with the Gaussian approximation be
lowest order; it should fairly easy computationally, at leas
the early stages, and it should converge to the result
experiment and simulation the farther one goes in
scheme. We now present an approach which generalize
previous Gaussian theory and satisfies the first two crit
completely, and the third criterion in all areas save one.

Since any functional can be written as a sum over gen
alized Hermite functional polynomials, we write the pro
ability distribution for the auxiliary field in the form@3#

P@mW #5P0@mW #(
J50

`

(
i1 ,•••,i J

aJ~ i 1 , . . . ,i J ;1 . . .J!

3HJ~ i 1 , . . . ,i J ;1 . . .J!, ~3.1!

where the indicesi 1 , . . . ,i J each range from 1 ton. Integra-
tion over repeated spatial and temporal variables is assum
P0@mW # is the Gaussian distribution.HJ are the Hermite func-
tional polynomials

HJ~ i 1 , . . . ,i J ;1 . . .J!5~21!JeK0[m
W ]

3
dJ

dmi1
~1! . . . dmiJ

~J!
e2K0[m

W ] ,

~3.2!

which form a complete orthogonal set, spanning a space
taining the O(n) symmetric functionals@3#. The functions
aJ , along withC0, are determined by the symmetry of th
problem and the series of constraints

^BW ~1!•sW ~2!&50, ~3.3!

^Bi~1!s j~2!sk~3!s l~4!&50, ~3.4!

A

In the Gaussian theory (J50) only the first constraint~3.3!
was necessary to determine the dynamics ofC0 completely.
e-

n

g

of
e
the
ia

r-

ed.

n-

As one does computations at higherJ, more of these con-
straints are necessary to determine all theaJ’s. At eachJ one
has a systematic approach to the problem and one ca
principle, calculate to any order inJ. One expects that by
enforcing more constraints onBW one will satisfy the exact
equation of motion~2.9! more stringently. At the same tim
one develops a more accurate expression forP@mW # as more
Hermite polynomials are included. In this sense then,
theory is expected to improve as one calculates to higheJ.
Finally, the use of Hermite polynomials allows one
straightforwardly express post-Gaussian averages in term
easily computable Gaussian averages.

We will work to orderJ52, which we call the first post-
Gaussian approximation, so we will make the choices

a051, ~3.5!

a1~ i ;1!50, ~3.6!

a2~ i , j ;12!5d i j A2~12!, ~3.7!

aJ~ i 1 , . . . ,i J ;1 . . .J!50 for J.2. ~3.8!

HereA2(12) is a scalar function, symmetric in its argumen
The condition ona0 insures that the theory reduces to t
correct Gaussian limit at lowest order and normalizes
probability distribution, providedP0@mW # is normalized. The
condition ona1 reflects the fact that there are no extern
fields andP@mW #5P@2mW #. The choice fora2 follows from
the O(n) symmetry, and considerations of isotropy and h
mogeneity.

B. General results for post-Gaussian averages

In order to calculate physical quantities likeCc in the
post-Gaussian approximation, we must be able to exp
one- and two-point averages like^f(1)& and ^f(1)x(2)&,
wheref and x are functions ofmW , in terms of related
Gaussian averages. The calculation for the case with no
tial gradients in the average is presented below. The imp
tant case where there are spatial gradients in the avera
slightly more involved, but the results for the O(n) model
are straightforward generalizations of the results for the s
lar case, presented in@3#. The two-point average
^f(1)x(2)& can be related to Gaussian averages by us
the definitions~3.1! and ~3.2! and doing a few integrations
by parts. The result is

^f~1!x~2!&5 (
J50

`

(
i1 ,•••,i J

aJ~ i 1 , . . . ,i J ;1̄ . . . J̄!

3K dJf~1!x~2!

dmi1
~ 1̄! . . . dmiJ

~ J̄! L
0

. ~3.9!

The barred quantities are integrated over in this express
but they will only contribute if they take the values 1 or 2.
the first post-Gaussian approximation~3.5!–~3.8! the two-
point average~3.9! is
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^f~1!x~2!&5^f~1!x~2!&01A2~11!^¹m
2f~1!x~2!&0

1A2~22!^f~1!¹m
2 x~2!&012A2~12!

3^¹mf~1!•¹mx~2!&0 , ~3.10!

with no integrations over the spatiotemporal variables. If
now proceed under the assumption th
A2(11) and A2(22) are nonzero, we will only be force
later to set them to zero so that the long-distance behavio
the theory is physical. For notational convenience we
these quantities to zero at the outset. Equation~3.10! can be
further simplified by introducing the operator

Ĝ~12!5112A2~12!
]

]C0~12!
~3.11!

since, for a general Gaussian average^f(1)x(2)&0, the fol-
lowing identity holds:

^¹mf~1!•¹mx~2!&05
]

]C0~12!
^f~1!x~2!&0 .

~3.12!

The two-point post-Gaussian average then can be comp
written

^f~1!x~2!&5Ĝ~12!^f~1!x~2!&0 . ~3.13!

The operator notation illuminates the close relation betw
Gaussian and post-Gaussian averages in the first p
Gaussian approximation. By settingx(2)51 in Eq. ~3.10!,
one obtains the formula

^f~1!&5^f~1!&0 ~3.14!

for the one-point average in the first post-Gaussian appr
mation.

C. Cc and Cc2 in the first post-Gaussian approximation

The post-Gaussian analog of Eq.~2.20! for the order-
parameter correlation functionCc can be straightforwardly
calculated using Eq.~3.13!. We write

Cc~12!5c0
2Ĝ~12!^m̂~1!•m̂~2!&05c0

2F~12!, ~3.15!

where now

F5
n

2p
B2F12 ,n11

2 G@ f F112g~F11 f F18!#. ~3.16!

The post-Gaussian quantityg is defined as

g~12![
A2~12!

S̄0
, ~3.17!

in analogy with the definition forf , Eq. ~2.19!. Although f
retains many features from the Gaussian theory, andg car-
ries much information about the post-Gaussian correctio
later we will find thatf andg influence each other strongly
and must be determined together using the appropriate
straint equations.
e
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Equation~3.13! can also be used to determine the po
GaussianCc2 from the GaussianCc2. We have

Cc25F212gF2821 for n>2. ~3.18!

Unlike the situation in the Gaussian theory, we now need
know the specific forms forf andg in order to create a BBS
plot. Knowledge of the adjustable parameter in the len
scale is, however, still unnecessary. Since the forms fof
andg are needed in the BBS plot, one hopes that the sh
of the BBS curve will now depend on spatial dimensionali
We should note at this point that if we had maintain
A2(11)50 we would now be forced to set it equal to zero,
that bothCc andCc2 decay to zero at large distances, as
expected physically.

D. Equations of motion

To determine the unknown functionsf andg we will use
constraints~3.3! and ~3.4!, enforced to keepBW small. For
now, we will work with QW 50 to make the post-Gaussia
analysis more transparent.

From our experience with the scalar case@3,4#, we know
that the constraint equation~3.3! evaluated at a single space
time point,

^BW ~1!•sW ~1!&50, ~3.19!

contains information about the short-distance behavior of
theory that will allow us later to simplify the constraint equ
tions for f andg. Written in full, Eq. ~3.19! becomes

1
2 ] t1^s

2~1!&2^sW ~1!•¹1
2sW ~1!&1^sW ~1!•¹m

2sW ~1!&50.
~3.20!

Evaluating Eq.~3.20! to leading order, we have

d0
~2!51 for n>2 ~3.21!

where

d0
~2!5S0

~2!12A2
~2! , ~3.22!

S0
~2![ lim

1→2
2¹1

2C0~12!, ~3.23!

A2
~2![ lim

1→2
2¹1

2A2~12!. ~3.24!

Definition ~3.23! for S0
(2) is equivalent to Eq.~2.29! if one

considers Eq.~2.29! to be an average using a Gaussian pro
ability distribution with the post-GaussianC0(12) as its cor-
relation function. The constantA2

(2) will turn out to be deter-
mined as part of an eigenvalue problem. SinceS0

(2) is a
manifestly positive quantity, Eq.~3.21! also provides an im-
portant upper bound on the eigenvalueA2

(2) . We must have
A2
(2),1/2 for n>2.
We now examine the constraint~3.3! written out in full,

] t1^s
W ~1!•sW ~2!&2¹1

2^sW ~1!•sW ~2!&1^@¹m
2sW ~1!#•sW ~2!&50,

~3.25!
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which in the Gaussian case is the sole equation neede
determine the dynamics ofCc . The evaluation of Eq.~3.25!
involves a straightforward application of Eq.~3.13! to the
appropriate Gaussian averages. At late times, the leading
der result is

] t1F~12!2¹1
2F~12!2

n

2pS0~1!
B2F12 , n11

2 G@~ f12g!

3~F11 f F18!12g f~2F181 f F19!#50. ~3.26!

For t1@t2 F, f and g are small, and Eq.~3.26! again be-
comes a linear equation forF. The relation betweenl and
m is Eq.~2.32!, unchanged from the Gaussian theory, and
definition of the scaling lengthL, Eq. ~2.31!, is retained.

As in the Gaussian case, we can write Eq.~3.26! as an
equal-time scaling equation

xW•¹xF1¹x
2F1

n

4m
B2F12 , n11

2 G@~ f12g!~F11 f F18!

12g f~2F181 f F19!#50. ~3.27!

Although the functionsF, f , and g are related through
Eqs. ~3.16! and ~3.27!, the additional constraint equatio
~3.4! is needed to complete the theory and determine th
functions separately. In Eq.~3.4!, we have a choice of how to
contract the indicesi jkl and 1234. It is important to note tha
the functiong entering the first post-Gaussian theory is
two-point quantity. Thus, unlike the usual case in pertur
tion theory, the first-order corrections to the Gaussian the
will not require us to treat the difficult intricacies of fou
point correlation functions. Therefore, in order to determ
g we only need enforce Eq.~3.4! contracted to a two-poin
function. A nontrivial constraint is obtained by contractin
the indicesi jkl in pairs. There then remain two possib
constraint equations

^BW ~1!•sW ~1!sW ~2!•sW ~2!&50, ~3.28!

^BW ~1!•sW ~2!sW ~1!•sW ~2!&50. ~3.29!

Unless there exists some degeneracy one cannot, in the
post-Gaussian approximation, satisfy relations~3.28! and
~3.29! simultaneously. Analysis of Eq.~3.29! shows that, for
n52, it produces an equation in which the eigenvalueA2

(2)

does not appear@24#. This is contrary to our expectation
based on previous work@3,4#, that we have to solve a doubl
eigenvalue problem in the post-Gaussian theory. It is the
fore clear that we should satisfy Eq.~3.28!.

Since we are enforcing Eq.~3.19! we may rewrite Eq.
~3.28! as

^BW ~1!•sW ~1!D~2!&50, ~3.30!

where

D~2!5s2~2!2c0
2 . ~3.31!

This computationally convenient form allows the calculati
to proceed in a way similar to that in@3#. Written in full, Eq.
~3.30! becomes
to

or-

e

se

-
ry

e

rst

e-

^@] t1s
W ~1!#•sW ~1!D~2!&2^@¹1

2sW ~1!#•sW ~1!D~2!&

1^@¹m
2sW ~1!#•sW ~1!D~2!&50. ~3.32!

To evaluate the post-Gaussian averages in Eq.~3.32! one
must use the formulas given in Sec. III B and generalize
results in@3# for post-Gaussian averages containing spa
gradients of ascalar field m to the case of a vector field
mW . Two new Gaussian averages specific to the O(n) model
must be calculated. After some algebra and rearrangem
Eq. ~3.32! reduces at late-times to an equal-time scal
equation forf andg. For n52 we have, at leading order in
1/L,

4pA2
~2!g f14m¹xf¹xg1m~¹xf !

2~118g fg2!50.
~3.33!

For n.2 we have

4pA2
~2!g f2F28/g

214m¹xf¹xg@2 f 2F22~n22!~F221!#

1m~¹xf !
2$2 f 2F22~n22!~F221!12g~4g2f 3F2

12 f 2F282~n22!@F2812~g222!~F221!/ f # !%50.

~3.34!

Note that, forn52, F25g2, and Eq.~3.34! reduces to Eq.
~3.33!.

These equations, together with Eqs.~3.16! and ~3.27!
form a complete set of relations that will be used to det
mine the functionsF, f , andg. There are two unspecified
constants in this set of equations—m andA2

(2) . We thus have
a nonlinear eigenvalue problem in whichm, the eigenvalue
familiar from the Gaussian theory, and the new eigenva
A2
(2) are determined by connecting the small- and largx

behaviors of Eqs.~3.27! and ~3.34!.
For largex, Eq. ~3.27! reduces to a linear equation, as

the Gaussian case, and once again leads to Eq.~2.34!. The
form for the exponentd22l in Eq. ~2.34! appears to be
robust. An examination of Eq.~3.34! at largex yields

f524g. ~3.35!

Up to now these results have been valid forn.1. Now, in
examining the short scaled-distance properties, we will fo
on the n52 case where there are logarithmic correctio
The generalization of Eq.~2.35! is

f ~x!511 f 2x
2F11

K2

lnx S 11OF 1lnxG D G1 f 4x
4F11

K4

lnx

3S 11OF 1lnxG D G1O~x6!, ~3.36!

g~x!5g2x
2F11

L2
lnx S 11OF 1lnxG D G1g4x

4F11
L4
lnx

3S 11OF 1lnxG D G1O~x6!. ~3.37!

An examination of Eq.~3.33! yields, atO(x2),
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pA2
~2!g21m~ f 2!

250. ~3.38!

At O(x2/lnx), one has

L252K2 . ~3.39!

Examining Eq.~3.27! yields, atO(lnx),

f 212g252
p

4md
, ~3.40!

while atO(1), using Eq.~3.39!, one has

K252
1

2
1

p

4md~ f 214g2!
F22d

2d
2
g2
f 2

G . ~3.41!

Equations~3.38! and ~3.40! determinef 2 andg2 separately
in terms of the eigenvaluesm andA2

(2) :

f 25
p

4md
@A2

~2!d2AA2
~2!d~21A2

~2!d!#, ~3.42!

g252
p

8md
@11A2

~2!d2AA2
~2!d~21A2

~2!d!#. ~3.43!

We have assumed thatA2
(2).0, and taken the negativ

square root in Eq.~3.42! in order to renderf 2 negative, as we
expect f<1 physically. Equations~3.39! and ~3.41! deter-
mine the corrections to the leading-order behavior. T
small-x expansion of the scaling form~3.18! for Cc2 is

Cc2~x!5
2g22 f 2
2~ f 2!

2

1

x2
1
K2

2 f 2

1

x2lnx
1OF 1

~xlnx!2G .
~3.44!

Note that the condition forCc2 to be positive near the origin
the behavior expected physically, is 2g22 f 2.0; which is
true for

A2
~2!.1/4d. ~3.45!

We will find, however, thatA2
(2) does not satisfy this lowe

bound, and the resulting negativity ofCc2 has to be inter-
preted carefully.

E. Defect correlations

The starting point for evaluating defect-defect correlatio
is to note@14# that the density for point defects~1.5! can be
rewritten in terms of the order-parameter field,

r~1!5d@cW ~1!# det@¹W 1cW ~1!#, ~3.46!

since the zeros ofcW are the locations of the defects. Fro
Eqs.~2.6! and~2.7! we see thatcW ;mW near the defect cores
so that Eq.~3.46! can be expressed in terms of the auxilia
field

r~1!5d@mW ~1!# det@¹W 1mW ~1!#. ~3.47!

This form is convenient for evaluating the equal-time defe
defect correlations~1.6! which separate as indicated in E
~1.7! into a piece representing the defect self-correlations
e

s

-

n0~ t !5^d@mW ~1!#u det@¹W 1mW ~1!#u&, ~3.48!

and a piece representing correlations between different
fects,

gdd~r ,t !5^d@mW ~1!#d@mW ~2!#

3det@¹W 1mW ~1!# det@¹W 2mW ~2!#&. ~3.49!

We sketch the calculation ofgdd(r ,t) for the post-Gaussian
theory in the Appendix. We recover the scaling relati
~1.10! with the post-Gaussian scaling form

g̃~x!5n! S hxD
n21S ]h

]x
1

]h̄

]xD 1~n21!n! S hxD
n22 h̄

x

]h

]x
,

~3.50!

whereh has the same definition it had in the Gaussian the
~2.27! andh̄, which contains the new post-Gaussian terms
given by

h̄52
g

p S ]g

]x
1g fg2

] f

]xD . ~3.51!

The defect densityn0(t) can be calculated directly by evalu
ating the post-Gaussian average in Eq.~3.48!. The derivation
is similar to that given for the Gaussian theory in@14# and, as
in the Gaussian theory, the absolute value of the determin
appearing in Eq.~3.48! is a complication that has to be car
fully treated. Alternatively, we can use the conservation l
~1.9! to computen0(t), using the post-Gaussian formu
~3.50! for g̃(x). Both approaches lead to the same result:

n0~ t !5
n!

2npn/2G~11n/2! F S0
~2!

nS0~ t !
Gn/2F11n

A2
~2!

S0
~2! G .

~3.52!

Using the small-x expansions~3.36! and ~3.37! for f andg,
we calculate the post-Gaussian modification to the beha
of g̃ at smallx for n5d52:

g̃~x!5
~ f 214g2!K2

2p2

1

x2~ lnx!2
1•••. ~3.53!

Thus, as in the Gaussian theory, leading order nonanaly
ties in the small-x behavior of the post-Gaussianf andg are
responsible for an unphysical divergence ing̃(x) at small
x. We will see that in the post-Gaussian theory the div
gence is weaker than it was in the Gaussian theory; howe
through the inclusion of fluctuations, we can eliminate t
divergence altogether.

IV. POST-GAUSSIAN THEORY INCLUDING
FLUCTUATIONS

A. Analysis of thes¢ degrees of freedom

We will now show how the inclusion of fluctuations abo
the ordering fieldsW can be used to eliminate the leadin
order nonanalyticities in the small-x behavior of f and g,
thereby renderingg̃(0) finite. This has been done succes
fully for the Gaussian theory in@17#. Fluctuations influence
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the equation of motion forsW Eq. ~2.9!, through the nonzero
QW field ~2.13!. The one-point equation~3.20!, used to deter-
mined0

(2) is modified by fluctuations to

1
2 ] t1^s

2~1!&2^sW ~1!•¹1
2sW ~1!&1^sW ~1!•¹m

2sW ~1!&

2
v0

L2~ t1!
^s2~1!&50. ~4.1!

The only difference between Eqs.~4.1! and~3.20! is the last
term, which isO(L22). For n52 the leading order contri
bution to ~4.1! is O(lnL/L2) so the fluctuation term does no
modify the resultd0

(2)51 for n52 in the post-Gaussian
theory. A similar thing happens in the Gaussian theo
where the inclusion of fluctuations does not modify the re
tion S0

(2)51 for n52 @17#.
Fluctuations do, however, modify the two-point equati

of motion ~3.25! determining the order-parameter corre
tions, and lead to a formula forl,

l5d2
p

4m
2

v0

2
. ~4.2!

At equal times in the scaling regime Eq.~3.25!, including
fluctuations, becomes

xW•¹xF1¹x
2F1v0F1

n

4m
B2F12 , n11

2 G@~ f12g!~F11 f F18!

12g f~2F181 f F19!#50. ~4.3!

The final equation of constraint~3.32! is modified to

^@] t1s
W ~1!#•sW ~1!D~2!&2^@¹1

2sW ~1!#•sW ~1!D~2!&

2
v0

L2~ t1!
^sW 2~1!D~2!&1^@¹m

2sW ~1!#•sW ~1!D~2!&50.

~4.4!

However, a calculation forn52 shows that at leading orde
in 1/L, this equation is unchanged from Eq.~3.33!, even in
the presence of fluctuations. Again, one has

4pA2
~2!g f14m¹xf¹xg1m~¹xf !

2~118g fg2!50.
~4.5!

The large-x behavior of the theory with fluctuations is esse
tially unchanged from the original post-Gaussian theo
Equations~2.34! and~3.35! still hold, except nowl is given
by Eq.~4.2!. Expansions~3.36! and~3.37! are used to exam
ine the small-x behavior of Eqs.~4.3! and ~4.5!. Once again
f 2 andg2 are given by Eq.~3.42! and~3.43!. Relation~3.39!
still holds, and from Eq.~4.3! one has

v05g2S 2d1
p

2m f 2
D2

p

2md
12dK2~ f 214g2!. ~4.6!

At this point we insist thatf andg are analytic for smallx at
O(x2) ~i.e., K25L250). This then fixesv0 in terms ofm
andA2

(2) ,
,
-

-
.

v05g2S 2d1
p

2m f 2
D2

p

2md
. ~4.7!

The next order terms areO(x4). From Eqs.~4.3! and ~4.5!
we obtain two equations determiningf 4 andg4:

~pA2
~2!14m f 2!g414m~ f 22g2! f 4

52mg2~ f 2!
22pA2

~2!g2f 2 , ~4.8!

f 412g45
3
4 ~ f 2!

213 f 2g21
~ f 212g2!

4~d12! F p

4m
222v0G .

~4.9!

Similarly, at the next order two relations can be derived
K4 andL4, which are more involved.

By usingv0 to eliminate the terms atO(x
2/lnx) in f and

g, we have also managed to remove the divergence ing̃(x)
at the origin. For smallx, we now have

g̃~x!52
1

p2 S 3~ f 412g4!2
~ f 2!

2

2
22 f 2g2D1OS 1

lnxD .
~4.10!

B. Analysis of fluctuation correlations

Correlations in the fluctuation fielduW are completely de-
termined within the theory. There are two types of equ
time averages that are of interest to us. The first descr
cross-correlations between thesW anduW fields, and is defined
as

Cu0~12!5^uW ~r1 ,t !•sW ~r2 ,t !&. ~4.11!

The second describes correlations of the fluctuation fi
with itself, and is given by

d i j Cuu~12!5^ui~r1 ,t !uj~r2 ,t !&. ~4.12!

As we will see later, these quantities are closely related in
scaling regime. In@17# it was shown how one can form equa
tions of motion for bothCu0 andCuu by using the equations
of motion ~2.9! and ~2.11! for sW and uW . We can then use
these equations to determineCu0 andCuu explicitly if we
make the additional assumption thatuW is a Gaussian field
coupled to the post-Gaussian fieldmW . To effect this change
we replace the Gaussian functionale2K0[m

W ] in Eqs.~3.1! and
~3.2! by the Gaussian functionale2K0[m

W ,uW ] , which is qua-
dratic in bothmW anduW . Post-Gaussian averages overmW are
evaluated as before, while repeated use of the identity

^ui~1!A@mW ,uW #&5E d3Cum~13!K d

dmi~3!
A@mW ,uW #L

1E d3 Cuu~13!K d

dui~3!
A@mW ,uW #L ,

~4.13!

with

d i j Cum~12!5^ui~1!mj~2!&, ~4.14!
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allows averages overuW to be expressed in terms ofCuu ,
Cum , and post-Gaussian averages overmW . We then evaluate
the averages overmW , which can be expressed in terms off
and g obtained previously. Finally, we examine the equ
tions of motion for the fluctuations in the late-time scali
regime and extract the scaling functions. The analysis clo
follows that given in@17#, so here we report only the fina
results for the post-Gaussian theory.

In @17# it was shown that, as a consequence of the defi
tion ~2.13! for QW , we must haveu;L22 to leading order.
We therefore write the scaling relations

Cu0~12!5
c0
2

L2
Fu~x! ~4.15!

and

Cuu~12!5
c0
2

L4
Fuu~x!. ~4.16!

The equations of motion developed in@17# can be general-
ized to the post-Gaussian case, and produce the follow
relations betweenFu andFuu :

Fu~0!F1f ~12A12 f 2!12g
12A12 f 2

f 2A12 f 2
G1Fu~x!

3F A12 f 2

11A12 f 2
2

2g f

A12 f 2~11A12 f 2!2
G52

v0

q0
2F~x!

~4.17!

and

Fuu~x!52
1

q0
2 Fv01

2q0
2

p
Fu~0!GFu~x!. ~4.18!

Forg50, Eq.~4.17! simplifies to the Gaussian form found i
@17#. The quantityFu(0) enters into these equations, and
analysis of Eq.~4.17! at x50 gives

Fu~0!52
v0

q0
2 . ~4.19!

We then find that

Fuu~0!5
v0
2

q0
4 F12

2

pG.0, ~4.20!

which is a necessary condition for stability and is expec
from definitions ~4.12! and ~4.16!. Equations ~4.17! and
~4.18! explicitly show how correlations in theuW field are
slaved to those of the order parameter. We have dem
strated here that the theory is consistent and that the fluc
tions remain ofO(L22).
-

ly

i-

g

d

n-
a-

V. NUMERICAL ANALYSIS OF THE NONLINEAR
EIGENVALUE PROBLEM

A. Post-Gaussian theory without fluctuations

The coupled nonlinear equations~3.16!, ~3.27!, and~3.33!
compose an eigenvalue problem for the eigenvaluesm and
A2
(2) which must be solved numerically. The eigenvalues

selected by matching the small-x behavior, given by Eqs
~3.36! and ~3.37!, onto the behavior at largex, Eqs. ~2.34!
and~3.35!. A fourth-order Runge-Kutta integrator is used
integrate Eq. ~3.27! and ~3.33! from near the origin
(x50.001) into the large-x, asymptotic regime. Matching
onto the proper large-x behavior forF is the prime factor
determiningm; the value ofA2

(2) controls how well condition
~3.35! is satisfied. The techniques used here are very sim
to those used in previous studies@3#.

We have examined the O~2! model without fluctuations in
two and three spatial dimensions. Table I contains the res
for the eigenvaluesm and A2

(2) . The upper bound
A2
(2),1/2 is satisfied both here, and later when we inclu

fluctuations. The order-parameter autocorrelation expon
l can be computed using Eq.~2.32! oncem is known. The
values forl obtained from the post-Gaussian theory are p
sented in Table II, along with results from the Gauss
theory @17#. The Gaussian theory is in excellent agreem
with simulations@9# of the O(2) model in two dimensions
which give the valuel51.171. The post-Gaussian theory
in worse agreement with this simulation result. We will s
below that the inclusion of fluctuations improves matte
slightly.

While the post-Gaussian theory decreasesl significantly,
the form of the order-parameter scaling functionF changes
only slightly from the Gaussian theory. The functionF is
plotted in Fig. 3 for the Gaussian and post-Gaussian theo
in two dimensions. The minor difference between the t
theories is reassuring because the Gaussian theory is alr

TABLE I. Values for the eigenvualesm ~top section! andA2
(2)

~bottom section! for the post-Gaussian theory, both with and wit
out fluctuations.

v050 v0Þ0

d52 0.8380 0.7597
d53 0.5326 0.5525

d52 0.05861 0.08092
d53 0.06364 0.05392

TABLE II. Auto-correlation exponentl from the Gaussian
theory@17# ~top section! and from the post-Gaussian theory~bottom
section!, both with and without fluctuations.

v050 v0Þ0

d52 1.172 1.269
d53 1.618 1.655

d52 1.063 1.092
d53 1.525 1.513
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in good agreement with simulations on this point@1#. The
functional form of f has the same qualitative features asF.
The quantityg is shown in Fig. 4. A key observation is tha
the first post-Gaussian correction measured byg(x) is small
for all x.

The functionCc2, Eq. ~3.18!, measuring correlations in
the square of the order-parameter field can be calcul
from f and g. The physical, positive divergence inCc2 at
small x, which is seen in the Gaussian theory, is now re
dered negative. This occurs in two and three dimensio
One does not have this problem in the post-Gaussian sc
theory @3#. Superficially, this unphysical result is a cons
quence ofA2

(2) not satisfying the lower bound~3.45!. More
careful consideration indicates that the root of the probl
lies in the method we chose to selectP@mW #. Our truncation
of the expansion ofP@mW # in Hermite functional polynomials
~3.1! ignores terms inP@mW # that areO(g2). To remedy this
we use a corrected form forCc2,

Cc25F2S 11g
F28

F2
D 221, ~5.1!

that differs from the previous form~3.18! only atO(g2), and
is manifestly positive near the origin. The BBS plot
1/(Cc211) against 12F using the corrected form~5.1! is

FIG. 3. Scaling formF(x) for the order-parameter correlatio
function in two dimensions. Atx52 the upper curve is the pos
Gaussian theory without fluctuations, and the lower curve is
Gaussian theory without fluctuations.

FIG. 4. The auxiliary functiong(x) for the post-Gaussian theor
without fluctuations in two dimensions.
ed

-
s.
lar

shown in Fig. 1 for the O~2! model in two and three dimen
sions. The post-Gaussian theory is in better agreement
the simulation results@11# than the Gaussian theory. Th
two-dimensional post-Gaussian results are in very go
agreement with simulation data for 12F.0.4, which are
intermediate to large distances,x.1. Unlike the Gaussian
theory, the shape of the BBS plot in the post-Gaussian the
depends on spatial dimensionality. On this point the po
Gaussian theory exhibits the same trends that are seen i
simulations—as the dimensionality increases from two
three the BBS plot approaches the Gaussian result. Th
observations are strong evidence that post-Gaussian stat
provide a more accurate description of the statistics gove
ing the auxiliary fieldmW than do Gaussian statistics.

Figure 2 shows the scaling formg̃(x) ~3.50! for the
defect-defect correlations for both the post-Gaussian
Gaussian theories in two dimensions. Simulation results@15#
are also shown. While there still is a divergence ing̃(x) at
smallx in the post-Gaussian theory, it is weaker than, and
opposite sign to, the divergence occuring in the Gauss
theory. The relative weakness of the divergence is a con
quence of the small valueK250.0018 in the post-Gaussia
theory, compared toK2520.5 in the Gaussian theory. W
see that the use of post-Gaussian statistics does muc
eliminate the the unphysical divergence ing̃(x), even in the
absence of fluctuations.

B. Post-Gaussian theory including fluctuations

The purpose of including fluctuations is fourfold. Firs
we want to render the auxiliary field correlation functio
analytic for smallx. Second, we would like to completel
eliminate the unphysical divergence at smallx in g̃(x).
Third, we want to improve the agreement between the va
of l obtained from the post-Gaussian theory and the va
seen in simulations. Fourth, we would like to see if the
clusion of fluctuations increasesA2

(2) so that Eq.~3.45! is

satisfied. We chooseQW to have the form~2.13!. In this ei-
genvalue problemv0 is selected using Eq.~4.7!, which guar-
antees thatK25L250. We then solve the nonlinear eigen
value problem posed by Eqs.~3.16!, ~4.3!, and ~4.5! using
the same methods we used above for the unmodified p
Gaussian theory. Ford52 the solution of the eigenvalu
problem gives v0520.2511, while for d53 one has
v050.1290. The eigenvaluesm andA2

(2) are given in Table
I. For d52 the eigenvalueA2

(2) is increased; however, it stil
does not satisfy the bound~3.45!. In three dimensionsA2

(2)

actually decreases slightly. Table II contains the values
l. The agreement between the value forl obtained from the
post-Gaussian theory ford52 and the value from simula
tions is slightly improved when fluctuations are added. Ad
ing fluctuations ford53 actually decreases the value forl
slightly, moving the post-Gaussian result farther away fro
the Gaussian result. We cannot comment on whether or
this represents an improvement since, to our knowledge
simulation data forl for the three-dimensional O~2! model
exists.

The scaling formF for order-parameter correlations
only slightly modified from the form shown in Fig. 3. On th
point, the post-Gaussian theory seems less susceptible t

e
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perturbations introduced by the fluctuations than the Gau
ian theory@17#. Since the bound~3.45! is not satisfied we
must again use Eq.~5.1! for Cc2 when creating the BBS plot
The results are shown in Fig. 5. It should be noted that fl
tuations do not modify the shape of the BBS plot in t
Gaussian theory because the leading order dependenc
Cc2 andF on f is unaffected byuW , which isO(L22). Again,
we see that the post-Gaussian theory is in better qualita
agreement with the simulation data than the Gaussian the
However, it appears that the addition of fluctuations remo
the dependency of the post-Gaussian BBS plot on dimens

The result forg̃(x) in the fluctuation-modified theory is
shown in Fig. 2. We see that the inclusion of fluctuations n
only eliminates the divergence ofg̃(x) at the origin, but that
g̃(x) is in better agreement with the simulation results do
to smaller values ofx than it was in the unmodified post
Gaussian theory. When compared to the Gaussian th
with fluctuations @17#, we see that the addition of pos
Gaussian corrections has the desired effect of reducing
magnitude ofg̃(0), and thus producing better agreeme
with simulation results.

VI. DISCUSSION

The main achievement of this paper is the extension of
Gaussian theory for the O~2! model to allow for non-
Gaussian statistics. In this sense the theory is unique. It is
trivial that the scaling properties of the Gaussian theory
retained. We have demonstrated that when the struct
form of P@mW # is modified to include a post-Gaussian part w
can still solve the~now double! eigenvalue problem and find
the fixed point solution forP@mW #. Thus we see a structur
emerging, related to the nature of the fixed-point, that
courages us to believe that we can systematically change
structural form forP@mW # via Eq. ~3.1! and obtain improved
results for the scaled quantities. Although the functiong is
small, the approach we are attempting here is nonpertu
tive.

In all areas examined, save the determination of the
ponentl, the first post-Gaussian approximation is in bet
agreement with the simulation results than the Gauss

FIG. 5. BBS plot for the post-Gaussian theory including flu
tuations. At 12F50.5, the lower solid curve is the Gaussia
theory, and the upper two curves, which are virtually indistinguis
able, are the post-Gaussian theory withv0Þ0 for d52 and 3. The
solid circles are the simulation data ford52, and the open circles
are the simulation data ford53 @11#.
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theory. Scaling results that are already in good agreem
with simulations, such asF and the large scaled-distanc
behavior ofg̃(x), are essentially unmodified by the additio
of post-Gaussian corrections. On the other hand in the B
plot ~Fig. 1!, where there exists a large discrepancy betwe
simulations@11# and the Gaussian theory, the addition
post-Gaussian terms qualitatively improves matters. Un
the Gaussian theory, the BBS plot in the post-Gauss
theory without fluctuations has a dependence on spatia
mensionality which shows the same trends seen in the si
lations. In addition, the first post-Gaussian approximat
nearly removes the divergence ing̃(x) at smallx.

The development here suggests some avenues for imp
ing the post-Gaussian treatment. For now we have used
ad hoc formula ~5.1!, which is correct toO(g), to obtain
meaningful results for the BBS plot. In order to treat the
corrections atO(g2) properly, we should go to the next orde
in the post-Gaussian approximation sequence. In the cur
approximation the value forl is decreased from the Gaus
ian result, and one hopes that the systematic inclusion
terms atO(g2) will raise l and provide better agreemen
with simulations. It is apparent that within this approxim
tion scheme the value forl is converging slower than the
results for the scaling functions, and may even be experie
ing some type of oscillatory behavior.

It is also a nontrivial matter that we were able to incorp
rate fluctuations into the post-Gaussian theory in a consis
manner. We have been successful in rendering bothf and
g more analytic, and thus eliminating the divergence
g̃(x). The addition of post-Gaussian terms to the fluctuatio
modified Gaussian theory has brought the value forg̃(0) into
better agreement with simulations, and thus generally
proved the agreement at smallx. The fluctuations also
slightly increase the value forl. We would also like to go
beyond the the simplest post-Gaussian fluctuation the
represented by Eq.~2.13!. To do this it would seem that on

needs to consideruW as a post-Gaussian field, coupled to t
post-GaussianmW @24#. Another interesting effect of adding
fluctuations to the post-Gaussian theory is the elimination
the dependence of the BBS plot on spatial dimensiona
Whether this is by accident, or is due to some deeper st
ture in the theory is presently unknown. It would be intere
ing to see if this effect remains if one includesO(g2) terms
in P@mW #.

An obvious next step would be to examine the O~3!
model using post-Gaussian statistics. The O~3! model is in-
teresting to study because of its application to ferromagn
materials, and the role it plays in the description of monop
defects in nematic liquid crystals and cosmology@25#. There
are some interesting aspects associated with highern @24#.

In examining the O~2! model we have shown how th
post-Gaussian theory generalizes to a situation with cont
ous symmetry, and solves some of the problems specifi
the n52 case. In developing the post-Gaussian theory a
systematic and calculable extension of the Gaussian the
we have also established the role that the Gaussian th
plays as a zeroth-order approximation to the true statist
There are many aspects of this process that suggest a d
underlying structure in the theory, including the interesti
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interactions between the post-Gaussian corrections and
fluctuations.
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APPENDIX

In this appendix we outline the method used to evalu
the post-Gaussian average occuring in the defect-defect
relation functiongdd(r ,t) ~3.49!. We have

gdd~r ,t !5^d@mW ~1!#d@mW ~2!# det@¹W 1mW ~1!#

3det@¹W 2mW ~2!#&

5e i1••• i ne j 1••• j n^Di1
~1! . . .Din

~1!

3Dj 1
~2! . . .Djn

~2!&, ~A1!

with a sum over repeated indices, and

Diq
~1!5d@mq~1!#

]mq~1!

]r 1i q
. ~A2!

Using the definitions~3.5!–~3.8!, and~3.9! the post-Gaussian
average in Eq.~A1! is

^Di1
~1! . . .Din

~1!Dj 1
~2! . . .Djn

~2!&

5^Di1
~1! . . .Din

~1!Dj 1
~2! . . .Djn

~2!&0

1 (
k51

n E d1̄d2̄ A2~ 1̄2̄!K d2

dmk~ 1̄!dmk~ 2̄!

3@Di1
~1! . . .Din

~1!Dj 1
~2! . . .Djn

~2!#L
0

. ~A3!

The first term on the right-hand side of Eq.~A3! is the origi-
nal Gaussian average, and was computed in@14#. We focus
on the term involvingA2, which factors into the following
product ofn averages over the Gaussian distributedscalar
mi ’s:

(
k51

n E d1̄d2̄ A2~ 1̄2̄!K d2

dmk~ 1̄!dmk~ 2̄!
@Dik

~1!Djk
~2!#L

0

3 )
q51,q5” k

n

^Diq
~1!Djq

~2!&0 . ~A4!

From @14# we know that
the

l
his
i-
i-

e
or-

^Diq
~1!Djq

~2!&05
h

r
d i qj q1F]h]r 2

h

r G r̂ i qr̂ j q, ~A5!

with

h52
g

2p

] f

]r
. ~A6!

In Eq. ~A4! the factor involving the integral is evaluated b
operating with the functional derivatives, integrating b
parts, applying the resultingd functions and calculating the
remaining Gaussian integrals. We find

E d1̄ d2̄ A2~ 1̄2̄!K d2

dmk~ 1̄!dmk~ 2̄!
@Dik

~1!Djk
~2!#L

0

5
h̄

r
d i kj k1F ]h̄

]r
2
h̄

r G r̂ i kr̂ j k, ~A7!

with

h̄52
g

p S ]g

]r
1g fg2

] f

]r D . ~A8!

Thus the complete expression forgdd is

gdd~r ,t !5n! S hr D
n21 ]h

]r
1D, ~A9!

with the post-Gaussian terms contained in

D5 (
k51

n

e i1••• i ne j 1••• j nS h̄r d i kj k1F ]h̄

]r
2
h̄

r G r̂ i kr̂ j kD
3 )

q51,q5” k

n S hr d i qj q1F ]h

]r
2
h

r G r̂ i qr̂ j qD . ~A10!

Due to symmetry, the only nonzero contributions toD come
from terms containing either zero or exactly two factors
r̂ . Mindful of this, we evaluateD and obtain

D5n! S hr D
n22F ]h̄

]r

h

r
1~n21!

h̄

r

]h

]r G . ~A11!

The post-Gaussian formula forgdd is then

gdd~r ,t !5n! S hr D
n21S ]h

]r
1

]h̄

]r D 1~n21!n! S hr D
n22 h̄

r

]h

]r
.

~A12!
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